{"title":"VDG:仅视觉动态高斯驾驶仿真","authors":"Hao Li;Jingfeng Li;Dingwen Zhang;Chenming Wu;Jieqi Shi;Chen Zhao;Haocheng Feng;Errui Ding;Jingdong Wang;Junwei Han","doi":"10.1109/LRA.2025.3555938","DOIUrl":null,"url":null,"abstract":"Recent advances in dynamic Gaussian splatting have significantly improved scene reconstruction and novel-view synthesis. However, existing methods often rely on pre-computed camera poses and Gaussian initialization using Structure from Motion (SfM) or other costly sensors, limiting their scalability. In this letter, we propose Vision-only Dynamic Gaussian (VDG), a novel method that, for the first time, integrates self-supervised visual odometry (VO) into a pose-free dynamic Gaussian splatting framework. Given the reason that estimated poses are not accurate enough to perform self-decomposition for dynamic scenes, we specifically design motion supervision, enabling precise static-dynamic decomposition and modeling of dynamic objects via dynamic Gaussians. Extensive experiments on urban driving datasets, including KITTI and Waymo, show that VDG consistently outperforms state-of-the-art dynamic view synthesis methods in both reconstruction accuracy and pose prediction with only image input.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"5138-5145"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VDG: Vision-Only Dynamic Gaussian for Driving Simulation\",\"authors\":\"Hao Li;Jingfeng Li;Dingwen Zhang;Chenming Wu;Jieqi Shi;Chen Zhao;Haocheng Feng;Errui Ding;Jingdong Wang;Junwei Han\",\"doi\":\"10.1109/LRA.2025.3555938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in dynamic Gaussian splatting have significantly improved scene reconstruction and novel-view synthesis. However, existing methods often rely on pre-computed camera poses and Gaussian initialization using Structure from Motion (SfM) or other costly sensors, limiting their scalability. In this letter, we propose Vision-only Dynamic Gaussian (VDG), a novel method that, for the first time, integrates self-supervised visual odometry (VO) into a pose-free dynamic Gaussian splatting framework. Given the reason that estimated poses are not accurate enough to perform self-decomposition for dynamic scenes, we specifically design motion supervision, enabling precise static-dynamic decomposition and modeling of dynamic objects via dynamic Gaussians. Extensive experiments on urban driving datasets, including KITTI and Waymo, show that VDG consistently outperforms state-of-the-art dynamic view synthesis methods in both reconstruction accuracy and pose prediction with only image input.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"5138-5145\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945440/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945440/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
VDG: Vision-Only Dynamic Gaussian for Driving Simulation
Recent advances in dynamic Gaussian splatting have significantly improved scene reconstruction and novel-view synthesis. However, existing methods often rely on pre-computed camera poses and Gaussian initialization using Structure from Motion (SfM) or other costly sensors, limiting their scalability. In this letter, we propose Vision-only Dynamic Gaussian (VDG), a novel method that, for the first time, integrates self-supervised visual odometry (VO) into a pose-free dynamic Gaussian splatting framework. Given the reason that estimated poses are not accurate enough to perform self-decomposition for dynamic scenes, we specifically design motion supervision, enabling precise static-dynamic decomposition and modeling of dynamic objects via dynamic Gaussians. Extensive experiments on urban driving datasets, including KITTI and Waymo, show that VDG consistently outperforms state-of-the-art dynamic view synthesis methods in both reconstruction accuracy and pose prediction with only image input.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.