VDG:仅视觉动态高斯驾驶仿真

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Hao Li;Jingfeng Li;Dingwen Zhang;Chenming Wu;Jieqi Shi;Chen Zhao;Haocheng Feng;Errui Ding;Jingdong Wang;Junwei Han
{"title":"VDG:仅视觉动态高斯驾驶仿真","authors":"Hao Li;Jingfeng Li;Dingwen Zhang;Chenming Wu;Jieqi Shi;Chen Zhao;Haocheng Feng;Errui Ding;Jingdong Wang;Junwei Han","doi":"10.1109/LRA.2025.3555938","DOIUrl":null,"url":null,"abstract":"Recent advances in dynamic Gaussian splatting have significantly improved scene reconstruction and novel-view synthesis. However, existing methods often rely on pre-computed camera poses and Gaussian initialization using Structure from Motion (SfM) or other costly sensors, limiting their scalability. In this letter, we propose Vision-only Dynamic Gaussian (VDG), a novel method that, for the first time, integrates self-supervised visual odometry (VO) into a pose-free dynamic Gaussian splatting framework. Given the reason that estimated poses are not accurate enough to perform self-decomposition for dynamic scenes, we specifically design motion supervision, enabling precise static-dynamic decomposition and modeling of dynamic objects via dynamic Gaussians. Extensive experiments on urban driving datasets, including KITTI and Waymo, show that VDG consistently outperforms state-of-the-art dynamic view synthesis methods in both reconstruction accuracy and pose prediction with only image input.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"5138-5145"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VDG: Vision-Only Dynamic Gaussian for Driving Simulation\",\"authors\":\"Hao Li;Jingfeng Li;Dingwen Zhang;Chenming Wu;Jieqi Shi;Chen Zhao;Haocheng Feng;Errui Ding;Jingdong Wang;Junwei Han\",\"doi\":\"10.1109/LRA.2025.3555938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in dynamic Gaussian splatting have significantly improved scene reconstruction and novel-view synthesis. However, existing methods often rely on pre-computed camera poses and Gaussian initialization using Structure from Motion (SfM) or other costly sensors, limiting their scalability. In this letter, we propose Vision-only Dynamic Gaussian (VDG), a novel method that, for the first time, integrates self-supervised visual odometry (VO) into a pose-free dynamic Gaussian splatting framework. Given the reason that estimated poses are not accurate enough to perform self-decomposition for dynamic scenes, we specifically design motion supervision, enabling precise static-dynamic decomposition and modeling of dynamic objects via dynamic Gaussians. Extensive experiments on urban driving datasets, including KITTI and Waymo, show that VDG consistently outperforms state-of-the-art dynamic view synthesis methods in both reconstruction accuracy and pose prediction with only image input.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 5\",\"pages\":\"5138-5145\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945440/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945440/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

动态高斯溅射的最新进展显著改善了场景重建和新视图合成。然而,现有的方法通常依赖于预先计算的相机姿势和使用运动结构(SfM)或其他昂贵的传感器的高斯初始化,限制了它们的可扩展性。在这篇文章中,我们提出了纯视觉动态高斯(VDG),这是一种新颖的方法,首次将自监督视觉里程计(VO)集成到无姿态的动态高斯飞溅框架中。鉴于估计的姿态不够精确,无法对动态场景进行自分解,我们专门设计了运动监督,通过动态高斯函数实现动态对象的精确静态动态分解和建模。在包括KITTI和Waymo在内的城市驾驶数据集上进行的大量实验表明,VDG在仅使用图像输入的情况下,在重建精度和姿态预测方面始终优于最先进的动态视图合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VDG: Vision-Only Dynamic Gaussian for Driving Simulation
Recent advances in dynamic Gaussian splatting have significantly improved scene reconstruction and novel-view synthesis. However, existing methods often rely on pre-computed camera poses and Gaussian initialization using Structure from Motion (SfM) or other costly sensors, limiting their scalability. In this letter, we propose Vision-only Dynamic Gaussian (VDG), a novel method that, for the first time, integrates self-supervised visual odometry (VO) into a pose-free dynamic Gaussian splatting framework. Given the reason that estimated poses are not accurate enough to perform self-decomposition for dynamic scenes, we specifically design motion supervision, enabling precise static-dynamic decomposition and modeling of dynamic objects via dynamic Gaussians. Extensive experiments on urban driving datasets, including KITTI and Waymo, show that VDG consistently outperforms state-of-the-art dynamic view synthesis methods in both reconstruction accuracy and pose prediction with only image input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信