双 V 型障板涡轮周围完全发展湍流气流的 CFD 研究和 ANN 传热系数预测

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Abdulaziz Alasiri , H.E. Fawaz
{"title":"双 V 型障板涡轮周围完全发展湍流气流的 CFD 研究和 ANN 传热系数预测","authors":"Abdulaziz Alasiri ,&nbsp;H.E. Fawaz","doi":"10.1016/j.csite.2025.106096","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a numerical study of periodic fully developed turbulent airflow in a rectangular channel with double upstream V-baffles installed on the upper and lower walls of the channel in an in-line manner. Utilizing the OpenFOAM open-source software, this numerical research investigates the impact of Re from 10,000 to 40,000 and BR from 0.3 to 0.5 on flow structure and heat transfer performance. An ANN model is constructed to estimate the local heat transfer coefficient using results obtained from the current CFD simulations and utilizing axial local distance (X/P), Re, and BR as ANN input parameters. The process of training incorporates the analysis of the loss function on training and validation data for controlling the weights and biases using backpropagation while feed forward propagate the selected input parameters. A total of 11 hidden layers consisting of 24 neurons each has been used in constructing the ANN, and the training process is optimized using the ADAM algorithm to minimize the loss function. The Final layer uses the linear activation function while all the hidden layers use the rectified Linear Units Activation function (ReLU). The ANN model demonstrates excellent predictive performance, yielding values close to 1 for R<sup>2</sup> and r, along with extremely low values for MSE, MAPE, MSLE, and log-cosh loss (0.01, 0.6 %, 0.001, and 0.01, respectively), demonstrating the ANN model's high predictive accuracy.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106096"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD investigation and ANN prediction of heat transfer coefficient for fully developed turbulent air flow around double V-baffle turbulators\",\"authors\":\"Abdulaziz Alasiri ,&nbsp;H.E. Fawaz\",\"doi\":\"10.1016/j.csite.2025.106096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a numerical study of periodic fully developed turbulent airflow in a rectangular channel with double upstream V-baffles installed on the upper and lower walls of the channel in an in-line manner. Utilizing the OpenFOAM open-source software, this numerical research investigates the impact of Re from 10,000 to 40,000 and BR from 0.3 to 0.5 on flow structure and heat transfer performance. An ANN model is constructed to estimate the local heat transfer coefficient using results obtained from the current CFD simulations and utilizing axial local distance (X/P), Re, and BR as ANN input parameters. The process of training incorporates the analysis of the loss function on training and validation data for controlling the weights and biases using backpropagation while feed forward propagate the selected input parameters. A total of 11 hidden layers consisting of 24 neurons each has been used in constructing the ANN, and the training process is optimized using the ADAM algorithm to minimize the loss function. The Final layer uses the linear activation function while all the hidden layers use the rectified Linear Units Activation function (ReLU). The ANN model demonstrates excellent predictive performance, yielding values close to 1 for R<sup>2</sup> and r, along with extremely low values for MSE, MAPE, MSLE, and log-cosh loss (0.01, 0.6 %, 0.001, and 0.01, respectively), demonstrating the ANN model's high predictive accuracy.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106096\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25003569\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003569","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文用数值方法研究了在矩形通道上下壁上沿直线安装双上游v型挡板的周期性充分发展湍流气流。利用OpenFOAM开源软件,研究了Re为10000 ~ 40000,BR为0.3 ~ 0.5对流动结构和传热性能的影响。利用现有的CFD模拟结果,利用轴向局部距离(X/P)、Re和BR作为人工神经网络的输入参数,构建了人工神经网络模型来估计局部换热系数。训练过程包含对训练和验证数据的损失函数的分析,使用反向传播来控制权重和偏差,而前馈传播所选的输入参数。该神经网络共使用了11个隐藏层,每个隐藏层由24个神经元组成,并使用ADAM算法对训练过程进行优化,以最小化损失函数。最后一层使用线性激活函数,而所有隐藏层使用整流线性单元激活函数(ReLU)。人工神经网络模型显示出出色的预测性能,R2和r的值接近1,MSE、MAPE、MSLE和log-cosh损失的值极低(分别为0.01、0.6%、0.001和0.01),表明人工神经网络模型具有很高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD investigation and ANN prediction of heat transfer coefficient for fully developed turbulent air flow around double V-baffle turbulators
This paper presents a numerical study of periodic fully developed turbulent airflow in a rectangular channel with double upstream V-baffles installed on the upper and lower walls of the channel in an in-line manner. Utilizing the OpenFOAM open-source software, this numerical research investigates the impact of Re from 10,000 to 40,000 and BR from 0.3 to 0.5 on flow structure and heat transfer performance. An ANN model is constructed to estimate the local heat transfer coefficient using results obtained from the current CFD simulations and utilizing axial local distance (X/P), Re, and BR as ANN input parameters. The process of training incorporates the analysis of the loss function on training and validation data for controlling the weights and biases using backpropagation while feed forward propagate the selected input parameters. A total of 11 hidden layers consisting of 24 neurons each has been used in constructing the ANN, and the training process is optimized using the ADAM algorithm to minimize the loss function. The Final layer uses the linear activation function while all the hidden layers use the rectified Linear Units Activation function (ReLU). The ANN model demonstrates excellent predictive performance, yielding values close to 1 for R2 and r, along with extremely low values for MSE, MAPE, MSLE, and log-cosh loss (0.01, 0.6 %, 0.001, and 0.01, respectively), demonstrating the ANN model's high predictive accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信