Nidhal Ben Khedher , Zia Ullah , Md Mahbub Alam , Saleh Al Arni , Isam Elbadawi , O.D. Makinde , Mohamed Boujelbene
{"title":"导热系数和变密度对MHD二级纳米流体沿高温聚合物表面传热传质的影响","authors":"Nidhal Ben Khedher , Zia Ullah , Md Mahbub Alam , Saleh Al Arni , Isam Elbadawi , O.D. Makinde , Mohamed Boujelbene","doi":"10.1016/j.csite.2025.106168","DOIUrl":null,"url":null,"abstract":"<div><div>The novelty of current research is to investigate exponential thermal density and thermal conductivity effect on heat-mass transmission in second-grade magneto nanofluid along stretching surface with thermal-solutal slip boundary conditions. The well define similarity transformation is applied on the couple of partial differential equations (PDEs) to transform into ordinary differential equations (ODEs). The Newton-Raphson and central difference technique is used to linearize these equations. Using MATLAB software technique, the results in graphical and numerical form are explored. The impact of various variables on fluid velocities, fluid temperatures and nanoparticle concentrations profiles are found graphically and numerically including, variable thermal conductivity, magnetic field, second-grade nanofluid factor, thermal slip, and concentration slip. The value of Nusselt number, Sherwood number and skin friction are found numerically for Prandtl number, density index, and thermophoretic factor. For asymptotic numerical outcomes, the following range of parameters such <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>1.4</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>N</mi><mi>t</mi><mo>≤</mo><mn>1.2</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>N</mi><mi>b</mi><mo>≤</mo><mn>2.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>ξ</mi><mo>≤</mo><mn>6.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>λ</mi><mo>≤</mo><mn>14.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><msub><mi>λ</mi><mn>1</mn></msub><mo>≤</mo><mn>8.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>0.8</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>Pr</mi><mo>≤</mo><mn>10.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>L</mi><mi>e</mi><mo>≤</mo><mn>3.5</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>B</mi><mi>t</mi><mo>≤</mo><mn>4.0</mn></mrow></math></span>, and <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>B</mi><mi>c</mi><mo>≤</mo><mn>5.0</mn></mrow></math></span> is used. It found that the higher value of thermal conductivity and thermal-concentration slip increases the velocity profile while magnetic field decreased it. Mass transmission and Nusselt rate are increased with increasing magnetic field. The maximum Nusselt number is explored for higher thermophoresis and density parameter. The noticeable amplitude in fluid velocity profiles is observed with thermal conductivity, temperature-concentration slip and buoyancy force effects under lower fluid density.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106168"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significance of thermal conductivity and variable density on heat and mass transfer of MHD second-grade nanofluid along high-temperature polymer surface\",\"authors\":\"Nidhal Ben Khedher , Zia Ullah , Md Mahbub Alam , Saleh Al Arni , Isam Elbadawi , O.D. Makinde , Mohamed Boujelbene\",\"doi\":\"10.1016/j.csite.2025.106168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The novelty of current research is to investigate exponential thermal density and thermal conductivity effect on heat-mass transmission in second-grade magneto nanofluid along stretching surface with thermal-solutal slip boundary conditions. The well define similarity transformation is applied on the couple of partial differential equations (PDEs) to transform into ordinary differential equations (ODEs). The Newton-Raphson and central difference technique is used to linearize these equations. Using MATLAB software technique, the results in graphical and numerical form are explored. The impact of various variables on fluid velocities, fluid temperatures and nanoparticle concentrations profiles are found graphically and numerically including, variable thermal conductivity, magnetic field, second-grade nanofluid factor, thermal slip, and concentration slip. The value of Nusselt number, Sherwood number and skin friction are found numerically for Prandtl number, density index, and thermophoretic factor. For asymptotic numerical outcomes, the following range of parameters such <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>1.4</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>N</mi><mi>t</mi><mo>≤</mo><mn>1.2</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>N</mi><mi>b</mi><mo>≤</mo><mn>2.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>ξ</mi><mo>≤</mo><mn>6.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>λ</mi><mo>≤</mo><mn>14.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><msub><mi>λ</mi><mn>1</mn></msub><mo>≤</mo><mn>8.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>0.8</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>Pr</mi><mo>≤</mo><mn>10.0</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>L</mi><mi>e</mi><mo>≤</mo><mn>3.5</mn></mrow></math></span>, <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>B</mi><mi>t</mi><mo>≤</mo><mn>4.0</mn></mrow></math></span>, and <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>B</mi><mi>c</mi><mo>≤</mo><mn>5.0</mn></mrow></math></span> is used. It found that the higher value of thermal conductivity and thermal-concentration slip increases the velocity profile while magnetic field decreased it. Mass transmission and Nusselt rate are increased with increasing magnetic field. The maximum Nusselt number is explored for higher thermophoresis and density parameter. The noticeable amplitude in fluid velocity profiles is observed with thermal conductivity, temperature-concentration slip and buoyancy force effects under lower fluid density.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106168\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25004289\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004289","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Significance of thermal conductivity and variable density on heat and mass transfer of MHD second-grade nanofluid along high-temperature polymer surface
The novelty of current research is to investigate exponential thermal density and thermal conductivity effect on heat-mass transmission in second-grade magneto nanofluid along stretching surface with thermal-solutal slip boundary conditions. The well define similarity transformation is applied on the couple of partial differential equations (PDEs) to transform into ordinary differential equations (ODEs). The Newton-Raphson and central difference technique is used to linearize these equations. Using MATLAB software technique, the results in graphical and numerical form are explored. The impact of various variables on fluid velocities, fluid temperatures and nanoparticle concentrations profiles are found graphically and numerically including, variable thermal conductivity, magnetic field, second-grade nanofluid factor, thermal slip, and concentration slip. The value of Nusselt number, Sherwood number and skin friction are found numerically for Prandtl number, density index, and thermophoretic factor. For asymptotic numerical outcomes, the following range of parameters such , , , , , , , , , , and is used. It found that the higher value of thermal conductivity and thermal-concentration slip increases the velocity profile while magnetic field decreased it. Mass transmission and Nusselt rate are increased with increasing magnetic field. The maximum Nusselt number is explored for higher thermophoresis and density parameter. The noticeable amplitude in fluid velocity profiles is observed with thermal conductivity, temperature-concentration slip and buoyancy force effects under lower fluid density.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.