基于负曲率抗共振中空纤芯光纤的全光纤压力自适应CO2浓度监测

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Kaiyu Chai , Yipeng Zheng , Bo Hu , Zihao Zhou , Kaili Ren , Dongdong Han , Lipeng Zhu , Yongkai Wang , Lei Liang , Linlin Zhang
{"title":"基于负曲率抗共振中空纤芯光纤的全光纤压力自适应CO2浓度监测","authors":"Kaiyu Chai ,&nbsp;Yipeng Zheng ,&nbsp;Bo Hu ,&nbsp;Zihao Zhou ,&nbsp;Kaili Ren ,&nbsp;Dongdong Han ,&nbsp;Lipeng Zhu ,&nbsp;Yongkai Wang ,&nbsp;Lei Liang ,&nbsp;Linlin Zhang","doi":"10.1016/j.infrared.2025.105879","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse gas detection is a key foundation for combating climate change and provides indispensable data support for scientific assessment of carbon emissions and their environmental impacts. In this study, an all-fiber pressure-adaptive gas concentration monitoring system based on tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy is presented. Within a negative curvature-anti-resonant hollow-core optical fiber, the system achieves simultaneous gas concentration detection and ambient pressure monitoring. A pressure compensation algorithm is implemented to dynamically compensate measured gas concentrations to standardized values at the target pressure under fluctuating ambient pressures. The method effectively suppresses concentration measurement instability induced by pressure fluctuations. Experimental results demonstrate a significant improvement: under 20 kPa pressure variations, the 1-h relative standard deviation of CO<sub>2</sub> concentration measurement is reduced from 3.60 % to 1.36 %. Simultaneously, the minimum detection limit is optimized from 121.4 ppm to 34.3 ppm at a 10-s integration time.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"148 ","pages":"Article 105879"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-fiber pressure-adaptive CO2 concentration monitoring based on negative curvature anti-resonance hollow core fiber\",\"authors\":\"Kaiyu Chai ,&nbsp;Yipeng Zheng ,&nbsp;Bo Hu ,&nbsp;Zihao Zhou ,&nbsp;Kaili Ren ,&nbsp;Dongdong Han ,&nbsp;Lipeng Zhu ,&nbsp;Yongkai Wang ,&nbsp;Lei Liang ,&nbsp;Linlin Zhang\",\"doi\":\"10.1016/j.infrared.2025.105879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Greenhouse gas detection is a key foundation for combating climate change and provides indispensable data support for scientific assessment of carbon emissions and their environmental impacts. In this study, an all-fiber pressure-adaptive gas concentration monitoring system based on tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy is presented. Within a negative curvature-anti-resonant hollow-core optical fiber, the system achieves simultaneous gas concentration detection and ambient pressure monitoring. A pressure compensation algorithm is implemented to dynamically compensate measured gas concentrations to standardized values at the target pressure under fluctuating ambient pressures. The method effectively suppresses concentration measurement instability induced by pressure fluctuations. Experimental results demonstrate a significant improvement: under 20 kPa pressure variations, the 1-h relative standard deviation of CO<sub>2</sub> concentration measurement is reduced from 3.60 % to 1.36 %. Simultaneously, the minimum detection limit is optimized from 121.4 ppm to 34.3 ppm at a 10-s integration time.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"148 \",\"pages\":\"Article 105879\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449525001720\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525001720","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

温室气体检测是应对气候变化的重要基础,为科学评估碳排放及其环境影响提供了不可或缺的数据支持。本文提出了一种基于可调谐二极管激光吸收光谱-波长调制光谱的全光纤压力自适应气体浓度监测系统。该系统在一根负曲率抗谐振空心光纤内,实现了气体浓度检测和环境压力监测同时进行。实现了一种压力补偿算法,在环境压力波动的情况下,将测量的气体浓度动态补偿到目标压力下的标准化值。该方法有效地抑制了压力波动引起的浓度测量不稳定性。实验结果表明,在20 kPa压力变化下,CO2浓度测量的1 h相对标准偏差从3.60%降低到1.36%。同时,在10 s的积分时间内,最小检出限从121.4 ppm优化到34.3 ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-fiber pressure-adaptive CO2 concentration monitoring based on negative curvature anti-resonance hollow core fiber
Greenhouse gas detection is a key foundation for combating climate change and provides indispensable data support for scientific assessment of carbon emissions and their environmental impacts. In this study, an all-fiber pressure-adaptive gas concentration monitoring system based on tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy is presented. Within a negative curvature-anti-resonant hollow-core optical fiber, the system achieves simultaneous gas concentration detection and ambient pressure monitoring. A pressure compensation algorithm is implemented to dynamically compensate measured gas concentrations to standardized values at the target pressure under fluctuating ambient pressures. The method effectively suppresses concentration measurement instability induced by pressure fluctuations. Experimental results demonstrate a significant improvement: under 20 kPa pressure variations, the 1-h relative standard deviation of CO2 concentration measurement is reduced from 3.60 % to 1.36 %. Simultaneously, the minimum detection limit is optimized from 121.4 ppm to 34.3 ppm at a 10-s integration time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信