Kaiyu Chai , Yipeng Zheng , Bo Hu , Zihao Zhou , Kaili Ren , Dongdong Han , Lipeng Zhu , Yongkai Wang , Lei Liang , Linlin Zhang
{"title":"基于负曲率抗共振中空纤芯光纤的全光纤压力自适应CO2浓度监测","authors":"Kaiyu Chai , Yipeng Zheng , Bo Hu , Zihao Zhou , Kaili Ren , Dongdong Han , Lipeng Zhu , Yongkai Wang , Lei Liang , Linlin Zhang","doi":"10.1016/j.infrared.2025.105879","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse gas detection is a key foundation for combating climate change and provides indispensable data support for scientific assessment of carbon emissions and their environmental impacts. In this study, an all-fiber pressure-adaptive gas concentration monitoring system based on tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy is presented. Within a negative curvature-anti-resonant hollow-core optical fiber, the system achieves simultaneous gas concentration detection and ambient pressure monitoring. A pressure compensation algorithm is implemented to dynamically compensate measured gas concentrations to standardized values at the target pressure under fluctuating ambient pressures. The method effectively suppresses concentration measurement instability induced by pressure fluctuations. Experimental results demonstrate a significant improvement: under 20 kPa pressure variations, the 1-h relative standard deviation of CO<sub>2</sub> concentration measurement is reduced from 3.60 % to 1.36 %. Simultaneously, the minimum detection limit is optimized from 121.4 ppm to 34.3 ppm at a 10-s integration time.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"148 ","pages":"Article 105879"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-fiber pressure-adaptive CO2 concentration monitoring based on negative curvature anti-resonance hollow core fiber\",\"authors\":\"Kaiyu Chai , Yipeng Zheng , Bo Hu , Zihao Zhou , Kaili Ren , Dongdong Han , Lipeng Zhu , Yongkai Wang , Lei Liang , Linlin Zhang\",\"doi\":\"10.1016/j.infrared.2025.105879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Greenhouse gas detection is a key foundation for combating climate change and provides indispensable data support for scientific assessment of carbon emissions and their environmental impacts. In this study, an all-fiber pressure-adaptive gas concentration monitoring system based on tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy is presented. Within a negative curvature-anti-resonant hollow-core optical fiber, the system achieves simultaneous gas concentration detection and ambient pressure monitoring. A pressure compensation algorithm is implemented to dynamically compensate measured gas concentrations to standardized values at the target pressure under fluctuating ambient pressures. The method effectively suppresses concentration measurement instability induced by pressure fluctuations. Experimental results demonstrate a significant improvement: under 20 kPa pressure variations, the 1-h relative standard deviation of CO<sub>2</sub> concentration measurement is reduced from 3.60 % to 1.36 %. Simultaneously, the minimum detection limit is optimized from 121.4 ppm to 34.3 ppm at a 10-s integration time.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"148 \",\"pages\":\"Article 105879\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449525001720\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525001720","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
All-fiber pressure-adaptive CO2 concentration monitoring based on negative curvature anti-resonance hollow core fiber
Greenhouse gas detection is a key foundation for combating climate change and provides indispensable data support for scientific assessment of carbon emissions and their environmental impacts. In this study, an all-fiber pressure-adaptive gas concentration monitoring system based on tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy is presented. Within a negative curvature-anti-resonant hollow-core optical fiber, the system achieves simultaneous gas concentration detection and ambient pressure monitoring. A pressure compensation algorithm is implemented to dynamically compensate measured gas concentrations to standardized values at the target pressure under fluctuating ambient pressures. The method effectively suppresses concentration measurement instability induced by pressure fluctuations. Experimental results demonstrate a significant improvement: under 20 kPa pressure variations, the 1-h relative standard deviation of CO2 concentration measurement is reduced from 3.60 % to 1.36 %. Simultaneously, the minimum detection limit is optimized from 121.4 ppm to 34.3 ppm at a 10-s integration time.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.