Aysha K. Demeler , James Bosco , Matthew J. Sydor , Michelle Nemetchek , Saeed Mortezazadeh , Liam Kerr , Sophia Bird , Roza Gabdullina , Cindee Yates-Hansen , Levi J. McClelland , Ekaterina Voronina , Trushar R. Patel , Borries Demeler
{"title":"分子相互作用的综合生物物理表征:sfgfp -纳米体复合物的案例研究","authors":"Aysha K. Demeler , James Bosco , Matthew J. Sydor , Michelle Nemetchek , Saeed Mortezazadeh , Liam Kerr , Sophia Bird , Roza Gabdullina , Cindee Yates-Hansen , Levi J. McClelland , Ekaterina Voronina , Trushar R. Patel , Borries Demeler","doi":"10.1016/j.ab.2025.115859","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares several analytical biophysical methods for investigating protein-protein interactions (PPIs) in solution, using the interaction between superfolder green fluorescent protein (sfGFP) and its anti-sfGFP nanobody enhancer as a model system. Techniques evaluated include microscale thermophoresis, fluorescence correlation spectroscopy, analytical ultracentrifugation with multi-wavelength and fluorescence detection, isothermal titration calorimetry, and analytical size exclusion chromatography coupled to multi-angle static light scattering and dynamic light scattering. Each method was assessed for information content, dynamic range, precision, and complementarity. The results consistently indicate a single-digit nanomolar dissociation constant and 1:1 stoichiometry for the interaction. While each technique offers unique insights into binding affinity, thermodynamics, and stoichiometry of the interaction, the multi-method approach provides a more complete and reliable characterization of PPIs. The study demonstrates how combining multiple complementary techniques enhances the robustness of PPI analysis in solution-phase conditions.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"703 ","pages":"Article 115859"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative biophysical characterization of molecular interactions: A case study with the sfGFP–nanobody complex\",\"authors\":\"Aysha K. Demeler , James Bosco , Matthew J. Sydor , Michelle Nemetchek , Saeed Mortezazadeh , Liam Kerr , Sophia Bird , Roza Gabdullina , Cindee Yates-Hansen , Levi J. McClelland , Ekaterina Voronina , Trushar R. Patel , Borries Demeler\",\"doi\":\"10.1016/j.ab.2025.115859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study compares several analytical biophysical methods for investigating protein-protein interactions (PPIs) in solution, using the interaction between superfolder green fluorescent protein (sfGFP) and its anti-sfGFP nanobody enhancer as a model system. Techniques evaluated include microscale thermophoresis, fluorescence correlation spectroscopy, analytical ultracentrifugation with multi-wavelength and fluorescence detection, isothermal titration calorimetry, and analytical size exclusion chromatography coupled to multi-angle static light scattering and dynamic light scattering. Each method was assessed for information content, dynamic range, precision, and complementarity. The results consistently indicate a single-digit nanomolar dissociation constant and 1:1 stoichiometry for the interaction. While each technique offers unique insights into binding affinity, thermodynamics, and stoichiometry of the interaction, the multi-method approach provides a more complete and reliable characterization of PPIs. The study demonstrates how combining multiple complementary techniques enhances the robustness of PPI analysis in solution-phase conditions.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"703 \",\"pages\":\"Article 115859\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269725000971\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725000971","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integrative biophysical characterization of molecular interactions: A case study with the sfGFP–nanobody complex
This study compares several analytical biophysical methods for investigating protein-protein interactions (PPIs) in solution, using the interaction between superfolder green fluorescent protein (sfGFP) and its anti-sfGFP nanobody enhancer as a model system. Techniques evaluated include microscale thermophoresis, fluorescence correlation spectroscopy, analytical ultracentrifugation with multi-wavelength and fluorescence detection, isothermal titration calorimetry, and analytical size exclusion chromatography coupled to multi-angle static light scattering and dynamic light scattering. Each method was assessed for information content, dynamic range, precision, and complementarity. The results consistently indicate a single-digit nanomolar dissociation constant and 1:1 stoichiometry for the interaction. While each technique offers unique insights into binding affinity, thermodynamics, and stoichiometry of the interaction, the multi-method approach provides a more complete and reliable characterization of PPIs. The study demonstrates how combining multiple complementary techniques enhances the robustness of PPI analysis in solution-phase conditions.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.