Yi Tian , Liping Li , Zhongmou Sun , Jiamin Liu , Chen Qiu , Ji Zhou , Xinghuai Sun , Yuan Lei
{"title":"解码臭氧对角膜的影响:屏障完整性的破坏及其分子驱动因素","authors":"Yi Tian , Liping Li , Zhongmou Sun , Jiamin Liu , Chen Qiu , Ji Zhou , Xinghuai Sun , Yuan Lei","doi":"10.1016/j.ecoenv.2025.118213","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the influence of ozone exposure on mouse corneas and human corneal epithelial cells (HCEC) to better understand its impact on corneal health and the underlying molecular mechanisms. Elevated cyclic ozone exposure was applied to both mouse corneas and HCECs to assess its effects on corneal structure and cellular response. Ozone exposure induced corneal stromal thinning (27.88 %), increased epithelial thickness (22.44 %), and disrupted epithelial barrier function. Inflammatory responses and nitrative stress, marked by inflammatory cell infiltration and heightened 3-nitrotyrosine levels, coupled with the upregulation of NLRP3, caspase-1 were observed in mice cornea. Additionally, ozone exposure induced diminished cell viability, nitrative stress, and activation of the NLRP3/caspase-1/GSDMD pathway in HCECs, which were mitigated by anti-nitration agent MnTMPyP treatment. In summary, the study elucidated the mechanisms underlying ozone-induced corneal toxicity, highlighting nitrative stress and NLRP3 inflammasome-mediated pyroptosis. These findings suggest the importance of minimizing ozone exposure and also provide potential therapeutic strategies targeting nitrative stress and inflammasome activation to prevent ozone-related tissue damage.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"296 ","pages":"Article 118213"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding ozone's impact on the cornea: disruption of barrier integrity and its molecular drivers\",\"authors\":\"Yi Tian , Liping Li , Zhongmou Sun , Jiamin Liu , Chen Qiu , Ji Zhou , Xinghuai Sun , Yuan Lei\",\"doi\":\"10.1016/j.ecoenv.2025.118213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to investigate the influence of ozone exposure on mouse corneas and human corneal epithelial cells (HCEC) to better understand its impact on corneal health and the underlying molecular mechanisms. Elevated cyclic ozone exposure was applied to both mouse corneas and HCECs to assess its effects on corneal structure and cellular response. Ozone exposure induced corneal stromal thinning (27.88 %), increased epithelial thickness (22.44 %), and disrupted epithelial barrier function. Inflammatory responses and nitrative stress, marked by inflammatory cell infiltration and heightened 3-nitrotyrosine levels, coupled with the upregulation of NLRP3, caspase-1 were observed in mice cornea. Additionally, ozone exposure induced diminished cell viability, nitrative stress, and activation of the NLRP3/caspase-1/GSDMD pathway in HCECs, which were mitigated by anti-nitration agent MnTMPyP treatment. In summary, the study elucidated the mechanisms underlying ozone-induced corneal toxicity, highlighting nitrative stress and NLRP3 inflammasome-mediated pyroptosis. These findings suggest the importance of minimizing ozone exposure and also provide potential therapeutic strategies targeting nitrative stress and inflammasome activation to prevent ozone-related tissue damage.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"296 \",\"pages\":\"Article 118213\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651325005494\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325005494","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Decoding ozone's impact on the cornea: disruption of barrier integrity and its molecular drivers
This study aims to investigate the influence of ozone exposure on mouse corneas and human corneal epithelial cells (HCEC) to better understand its impact on corneal health and the underlying molecular mechanisms. Elevated cyclic ozone exposure was applied to both mouse corneas and HCECs to assess its effects on corneal structure and cellular response. Ozone exposure induced corneal stromal thinning (27.88 %), increased epithelial thickness (22.44 %), and disrupted epithelial barrier function. Inflammatory responses and nitrative stress, marked by inflammatory cell infiltration and heightened 3-nitrotyrosine levels, coupled with the upregulation of NLRP3, caspase-1 were observed in mice cornea. Additionally, ozone exposure induced diminished cell viability, nitrative stress, and activation of the NLRP3/caspase-1/GSDMD pathway in HCECs, which were mitigated by anti-nitration agent MnTMPyP treatment. In summary, the study elucidated the mechanisms underlying ozone-induced corneal toxicity, highlighting nitrative stress and NLRP3 inflammasome-mediated pyroptosis. These findings suggest the importance of minimizing ozone exposure and also provide potential therapeutic strategies targeting nitrative stress and inflammasome activation to prevent ozone-related tissue damage.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.