树中最大解离集数目的上界

IF 0.7 3区 数学 Q2 MATHEMATICS
Ziyuan Wang , Lei Zhang , Jianhua Tu , Liming Xiong
{"title":"树中最大解离集数目的上界","authors":"Ziyuan Wang ,&nbsp;Lei Zhang ,&nbsp;Jianhua Tu ,&nbsp;Liming Xiong","doi":"10.1016/j.disc.2025.114545","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph. A dissociation set of <em>G</em> is defined as a set of vertices that induces a subgraph in which every vertex has a degree of at most 1. A dissociation set is maximal if it is not contained as a proper subset in any other dissociation set. We introduce the notation <span><math><mi>Φ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to represent the number of maximal dissociation sets in <em>G</em>. This study focuses on trees, specifically showing that for any tree <em>T</em> of order <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the following inequality holds:<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo></math></span></span></span> We also identify extremal trees that attain this upper bound. Additionally, to establish the upper bound on the number of maximal dissociation sets in trees of order <em>n</em>, we also determine the second largest number of maximal dissociation sets in forests of order <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114545"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bound for the number of maximal dissociation sets in trees\",\"authors\":\"Ziyuan Wang ,&nbsp;Lei Zhang ,&nbsp;Jianhua Tu ,&nbsp;Liming Xiong\",\"doi\":\"10.1016/j.disc.2025.114545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a simple graph. A dissociation set of <em>G</em> is defined as a set of vertices that induces a subgraph in which every vertex has a degree of at most 1. A dissociation set is maximal if it is not contained as a proper subset in any other dissociation set. We introduce the notation <span><math><mi>Φ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to represent the number of maximal dissociation sets in <em>G</em>. This study focuses on trees, specifically showing that for any tree <em>T</em> of order <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the following inequality holds:<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≤</mo><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>.</mo></math></span></span></span> We also identify extremal trees that attain this upper bound. Additionally, to establish the upper bound on the number of maximal dissociation sets in trees of order <em>n</em>, we also determine the second largest number of maximal dissociation sets in forests of order <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114545\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001530\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001530","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个简单的图。解离集G被定义为一组顶点,这些顶点诱导出一个子图,其中每个顶点的度数最多为1。如果一个解离集不作为适当子集包含在任何其他解离集中,则该解离集是最大的。我们引入Φ(G)符号来表示G中最大解离集的个数。本研究着重于树,具体表明对于n≥4阶的任意树T,以下不等式成立:Φ(T)≤3n−13+n−13。我们还找出了达到这个上界的极值树。此外,为了确定n阶树中最大解离集数量的上界,我们还确定了n阶森林中第二大最大解离集的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bound for the number of maximal dissociation sets in trees
Let G be a simple graph. A dissociation set of G is defined as a set of vertices that induces a subgraph in which every vertex has a degree of at most 1. A dissociation set is maximal if it is not contained as a proper subset in any other dissociation set. We introduce the notation Φ(G) to represent the number of maximal dissociation sets in G. This study focuses on trees, specifically showing that for any tree T of order n4, the following inequality holds:Φ(T)3n13+n13. We also identify extremal trees that attain this upper bound. Additionally, to establish the upper bound on the number of maximal dissociation sets in trees of order n, we also determine the second largest number of maximal dissociation sets in forests of order n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信