具有退化黏度和远场真空的三维等熵可压缩Navier-Stokes方程Cauchy问题的局部强解

IF 2.4 2区 数学 Q1 MATHEMATICS
Jiaxu Li , Lixin Li
{"title":"具有退化黏度和远场真空的三维等熵可压缩Navier-Stokes方程Cauchy问题的局部强解","authors":"Jiaxu Li ,&nbsp;Lixin Li","doi":"10.1016/j.jde.2025.113338","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the Cauchy problem of the isentropic compressible Navier-Stokes equations with degenerate viscosities and far-field vacuum. When the shear and the bulk viscosity are power functions of the density (<span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>δ</mi></mrow></msup></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span>), it is proved that the three-dimensional Cauchy problem of the compressible Navier-Stokes equations admits a unique strong solution provided the initial density decays as <span><math><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>(</mo><msup><mrow><mo>(</mo><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>(</mo><mn>3</mn><mo>−</mo><mn>2</mn><mi>ε</mi><mo>)</mo><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo><mo>(</mo><mn>3</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mo>)</mo></math></span> at infinity with <span><math><mi>γ</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Notably, the choice of <em>δ</em> can be made independently of <em>γ</em>, broadening the range of permissible <em>δ</em> values compared to previous studies. Consequently, these findings have broader applicability to a diverse array of physical models, including those involving Maxwellian molecules.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"435 ","pages":"Article 113338"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On local strong solutions to the Cauchy problem of 3D isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum\",\"authors\":\"Jiaxu Li ,&nbsp;Lixin Li\",\"doi\":\"10.1016/j.jde.2025.113338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns the Cauchy problem of the isentropic compressible Navier-Stokes equations with degenerate viscosities and far-field vacuum. When the shear and the bulk viscosity are power functions of the density (<span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>δ</mi></mrow></msup></math></span> with <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span>), it is proved that the three-dimensional Cauchy problem of the compressible Navier-Stokes equations admits a unique strong solution provided the initial density decays as <span><math><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>(</mo><msup><mrow><mo>(</mo><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>(</mo><mn>3</mn><mo>−</mo><mn>2</mn><mi>ε</mi><mo>)</mo><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo><mo>(</mo><mn>3</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mo>)</mo></math></span> at infinity with <span><math><mi>γ</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Notably, the choice of <em>δ</em> can be made independently of <em>γ</em>, broadening the range of permissible <em>δ</em> values compared to previous studies. Consequently, these findings have broader applicability to a diverse array of physical models, including those involving Maxwellian molecules.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"435 \",\"pages\":\"Article 113338\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003651\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003651","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及具有退化粘度和远场真空的等熵可压缩 Navier-Stokes 方程的 Cauchy 问题。当剪切粘度和体积粘度是密度的幂函数(ρδ为 0<δ<1)时,只要初始密度在无穷大处衰减为 |x|-α((2γ-1-δ)-1<α<2(3-2ε)/(1-δ)(3-ε)),且γ>1 和 ε∈(0,1], 可压缩 Navier-Stokes 方程的三维 Cauchy 问题就有唯一的强解。值得注意的是,δ 的选择可以与 γ 无关,与以前的研究相比,扩大了允许的 δ 值范围。因此,这些发现更广泛地适用于各种物理模型,包括涉及麦克斯韦分子的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On local strong solutions to the Cauchy problem of 3D isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum
This paper concerns the Cauchy problem of the isentropic compressible Navier-Stokes equations with degenerate viscosities and far-field vacuum. When the shear and the bulk viscosity are power functions of the density (ρδ with 0<δ<1), it is proved that the three-dimensional Cauchy problem of the compressible Navier-Stokes equations admits a unique strong solution provided the initial density decays as |x|α((2γ1δ)1<α<2(32ε)/(1δ)(3ε)) at infinity with γ>1 and ε(0,1]. Notably, the choice of δ can be made independently of γ, broadening the range of permissible δ values compared to previous studies. Consequently, these findings have broader applicability to a diverse array of physical models, including those involving Maxwellian molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信