{"title":"内质网应激:免疫细胞调节和自身免疫性疾病的关键参与者","authors":"Marion Moreews, Mikael C.I. Karlsson","doi":"10.1016/j.smim.2025.101954","DOIUrl":null,"url":null,"abstract":"<div><div>The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.</div></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"78 ","pages":"Article 101954"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders\",\"authors\":\"Marion Moreews, Mikael C.I. Karlsson\",\"doi\":\"10.1016/j.smim.2025.101954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.</div></div>\",\"PeriodicalId\":49546,\"journal\":{\"name\":\"Seminars in Immunology\",\"volume\":\"78 \",\"pages\":\"Article 101954\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044532325000260\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044532325000260","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders
The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.
期刊介绍:
Seminars in Immunology is a specialized review journal that serves as a valuable resource for scientists in the field of immunology. The journal's approach is thematic, with each issue dedicated to a specific topic of significant interest to immunologists. It covers a wide range of research areas, from the molecular and cellular foundations of the immune response to the potential for its manipulation, highlighting recent advancements in these areas.
Each thematic issue is curated by a guest editor, who is recognized as an expert in the field internationally. The content of each issue typically includes six to eight authoritative invited reviews, which delve into various aspects of the chosen topic. The goal of these reviews is to provide a comprehensive, coherent, and engaging overview of the subject matter, ensuring that the information is presented in a timely manner to maintain its relevance.
The journal's commitment to quality and timeliness is further supported by its inclusion in the Scopus database, which is a leading abstract and citation database of peer-reviewed literature. Being indexed in Scopus helps to ensure that the journal's content is accessible to a broad audience of researchers and professionals in immunology and related fields.