Letian Gan , Dongrui Ruan , Haijun Wang , Zhe Wang , Yanzhao Shi , Yiming Hu , Peng Zhou , Fanghao Zhou , Zheng Jia , Tiefeng Li
{"title":"极端静水压力下耐压柔性系统的设计与优化","authors":"Letian Gan , Dongrui Ruan , Haijun Wang , Zhe Wang , Yanzhao Shi , Yiming Hu , Peng Zhou , Fanghao Zhou , Zheng Jia , Tiefeng Li","doi":"10.1016/j.eml.2025.102339","DOIUrl":null,"url":null,"abstract":"<div><div>Soft robots have been increasingly developed and deployed for deep-sea applications in recent years. Unlike traditional underwater robots that rely on bulky pressure vessels for protection, some soft robots can be directly exposed to hydrostatic pressure utilizing a polymer-encapsulation approach. This approach optimizes the structure of electronic components in soft robots to eliminate high-pressure interfaces, yet clear design guidelines remain absent due to its complexity. This paper introduces a design methodology for pressure-tolerant electronics; that leverages the Eshelby inclusion theory and finite element analysis. A parameter <em>κ</em> called the geometric coherence index for numerical optimization is proposed to evaluate the arrangement of PCB components. Calculations and simulations have demonstrated that the optimized circuit board components exhibit a reduction of up to 45.5 % in both maximum and average shear stress under high hydrostatic pressure. A circuit board prototype has been manufactured and then tested at a depth of 10,900 m in the Mariana Trench. Field tests have confirmed the effectiveness of this method, demonstrating its potential for improving deep-sea exploration technologies.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102339"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of pressure-tolerant flexible systems under extreme hydrostatic pressure\",\"authors\":\"Letian Gan , Dongrui Ruan , Haijun Wang , Zhe Wang , Yanzhao Shi , Yiming Hu , Peng Zhou , Fanghao Zhou , Zheng Jia , Tiefeng Li\",\"doi\":\"10.1016/j.eml.2025.102339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soft robots have been increasingly developed and deployed for deep-sea applications in recent years. Unlike traditional underwater robots that rely on bulky pressure vessels for protection, some soft robots can be directly exposed to hydrostatic pressure utilizing a polymer-encapsulation approach. This approach optimizes the structure of electronic components in soft robots to eliminate high-pressure interfaces, yet clear design guidelines remain absent due to its complexity. This paper introduces a design methodology for pressure-tolerant electronics; that leverages the Eshelby inclusion theory and finite element analysis. A parameter <em>κ</em> called the geometric coherence index for numerical optimization is proposed to evaluate the arrangement of PCB components. Calculations and simulations have demonstrated that the optimized circuit board components exhibit a reduction of up to 45.5 % in both maximum and average shear stress under high hydrostatic pressure. A circuit board prototype has been manufactured and then tested at a depth of 10,900 m in the Mariana Trench. Field tests have confirmed the effectiveness of this method, demonstrating its potential for improving deep-sea exploration technologies.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"77 \",\"pages\":\"Article 102339\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431625000513\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000513","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and optimization of pressure-tolerant flexible systems under extreme hydrostatic pressure
Soft robots have been increasingly developed and deployed for deep-sea applications in recent years. Unlike traditional underwater robots that rely on bulky pressure vessels for protection, some soft robots can be directly exposed to hydrostatic pressure utilizing a polymer-encapsulation approach. This approach optimizes the structure of electronic components in soft robots to eliminate high-pressure interfaces, yet clear design guidelines remain absent due to its complexity. This paper introduces a design methodology for pressure-tolerant electronics; that leverages the Eshelby inclusion theory and finite element analysis. A parameter κ called the geometric coherence index for numerical optimization is proposed to evaluate the arrangement of PCB components. Calculations and simulations have demonstrated that the optimized circuit board components exhibit a reduction of up to 45.5 % in both maximum and average shear stress under high hydrostatic pressure. A circuit board prototype has been manufactured and then tested at a depth of 10,900 m in the Mariana Trench. Field tests have confirmed the effectiveness of this method, demonstrating its potential for improving deep-sea exploration technologies.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.