Wenbo Wu , Lei Liu , Jingtao Wang , Bin Li , Zongyu Ye , Wangmeng Zuo , Yun Pan
{"title":"基于双域窗曼巴的单幅图像去模糊多级网络","authors":"Wenbo Wu , Lei Liu , Jingtao Wang , Bin Li , Zongyu Ye , Wangmeng Zuo , Yun Pan","doi":"10.1016/j.neunet.2025.107460","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-stage methods have been proven effective and widely used in image deblurring research. These methods, usually designed based on Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs), have limitations, including the inability to capture global contextual information and a quadratic increase in computational complexity as image resolution. Additionally, although current methods have incorporated frequency domain information, they do not sufficiently explore the interrelationships of different frequencies. To address these issues, we proposed a Multi-Stage Visual Dual-Domain Window Mamba (DDWMamba) approach to realize image deblurring, leveraging the benefits of state space models (SSMs) for image data. First, to achieve better deblurring effects, we used a multi-stage design approach in which each stage maintains the details and global information of the original resolution image. Second, we proposed a DDWMamba Block, which includes a Spatial Window Visual Mamba and a Frequency Window Visual Mamba, aiming to fully explore the correlations between different pixels in both the spatial and frequency domains. Finally, to implement a coarse-to-fine design approach in the multi-stage method and reduce model complexity, we set a window operation with different window sizes for each stage. DDWMamba is extensively evaluated on several benchmark datasets, and the model achieves superior performance compared to existing state-of-the-art deblurring methods.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107460"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stage network for single image deblurring based on dual-domain window mamba\",\"authors\":\"Wenbo Wu , Lei Liu , Jingtao Wang , Bin Li , Zongyu Ye , Wangmeng Zuo , Yun Pan\",\"doi\":\"10.1016/j.neunet.2025.107460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-stage methods have been proven effective and widely used in image deblurring research. These methods, usually designed based on Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs), have limitations, including the inability to capture global contextual information and a quadratic increase in computational complexity as image resolution. Additionally, although current methods have incorporated frequency domain information, they do not sufficiently explore the interrelationships of different frequencies. To address these issues, we proposed a Multi-Stage Visual Dual-Domain Window Mamba (DDWMamba) approach to realize image deblurring, leveraging the benefits of state space models (SSMs) for image data. First, to achieve better deblurring effects, we used a multi-stage design approach in which each stage maintains the details and global information of the original resolution image. Second, we proposed a DDWMamba Block, which includes a Spatial Window Visual Mamba and a Frequency Window Visual Mamba, aiming to fully explore the correlations between different pixels in both the spatial and frequency domains. Finally, to implement a coarse-to-fine design approach in the multi-stage method and reduce model complexity, we set a window operation with different window sizes for each stage. DDWMamba is extensively evaluated on several benchmark datasets, and the model achieves superior performance compared to existing state-of-the-art deblurring methods.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107460\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025003399\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003399","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-stage network for single image deblurring based on dual-domain window mamba
Multi-stage methods have been proven effective and widely used in image deblurring research. These methods, usually designed based on Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs), have limitations, including the inability to capture global contextual information and a quadratic increase in computational complexity as image resolution. Additionally, although current methods have incorporated frequency domain information, they do not sufficiently explore the interrelationships of different frequencies. To address these issues, we proposed a Multi-Stage Visual Dual-Domain Window Mamba (DDWMamba) approach to realize image deblurring, leveraging the benefits of state space models (SSMs) for image data. First, to achieve better deblurring effects, we used a multi-stage design approach in which each stage maintains the details and global information of the original resolution image. Second, we proposed a DDWMamba Block, which includes a Spatial Window Visual Mamba and a Frequency Window Visual Mamba, aiming to fully explore the correlations between different pixels in both the spatial and frequency domains. Finally, to implement a coarse-to-fine design approach in the multi-stage method and reduce model complexity, we set a window operation with different window sizes for each stage. DDWMamba is extensively evaluated on several benchmark datasets, and the model achieves superior performance compared to existing state-of-the-art deblurring methods.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.