碳基纳米复合膜在水处理中的应用进展

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Soheil Zarghami , Toraj Mohammadi
{"title":"碳基纳米复合膜在水处理中的应用进展","authors":"Soheil Zarghami ,&nbsp;Toraj Mohammadi","doi":"10.1016/j.cogsc.2025.101026","DOIUrl":null,"url":null,"abstract":"<div><div>In today's industrial world, population growth and increased industrial production have intensified the need for potable water supply and effective wastewater treatment. Due to environmental concerns, advancements in separation processes have also become necessary. Membrane processes are particularly effective in removing contaminants from entering effluents, thereby protecting water sources, and are high-performance techniques for water and wastewater treatment. The synergistic effect of carbon-based nanocomposite membranes, resulting from the properties of carbon based nanomaterials (CBNs) (such as carbon nanotubes (CNTs) and, graphene oxide (GO)) combined with the unique characteristics of membrane separation techniques, has led to improved performance of the membrane processes. The classification of the content is based on the dimensions of CBNs and membranes: zero-dimensional (0D), one-dimensional (1D) and two-dimensional (2D). Efforts have been made to review articles from the past two years. This study briefly reviews newly developed membranes using carbon nanomaterials in various membrane technologies, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane bioreactor (MBR), and membrane distillation (MD), aiming to highlight their potential success.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"53 ","pages":"Article 101026"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances on carbon-based nanocomposite membranes in water and wastewater applications\",\"authors\":\"Soheil Zarghami ,&nbsp;Toraj Mohammadi\",\"doi\":\"10.1016/j.cogsc.2025.101026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In today's industrial world, population growth and increased industrial production have intensified the need for potable water supply and effective wastewater treatment. Due to environmental concerns, advancements in separation processes have also become necessary. Membrane processes are particularly effective in removing contaminants from entering effluents, thereby protecting water sources, and are high-performance techniques for water and wastewater treatment. The synergistic effect of carbon-based nanocomposite membranes, resulting from the properties of carbon based nanomaterials (CBNs) (such as carbon nanotubes (CNTs) and, graphene oxide (GO)) combined with the unique characteristics of membrane separation techniques, has led to improved performance of the membrane processes. The classification of the content is based on the dimensions of CBNs and membranes: zero-dimensional (0D), one-dimensional (1D) and two-dimensional (2D). Efforts have been made to review articles from the past two years. This study briefly reviews newly developed membranes using carbon nanomaterials in various membrane technologies, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane bioreactor (MBR), and membrane distillation (MD), aiming to highlight their potential success.</div></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"53 \",\"pages\":\"Article 101026\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223625000306\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223625000306","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在今天的工业世界中,人口增长和工业生产的增加加剧了对饮用水供应和有效废水处理的需求。由于对环境的关注,分离工艺的进步也变得必要。膜处理在去除进入污水的污染物,从而保护水源方面特别有效,是水和废水处理的高性能技术。由于碳基纳米材料(如碳纳米管(CNTs)和氧化石墨烯(GO))的特性与膜分离技术的独特特性相结合,碳基纳米复合膜的协同效应导致了膜工艺性能的提高。内容的分类是基于cbn和膜的尺寸:零维(0D),一维(1D)和二维(2D)。我们已经努力审查过去两年的文章。本文简要介绍了近年来利用碳纳米材料制备膜的各种膜技术,包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、正渗透(FO)、膜生物反应器(MBR)和膜蒸馏(MD)等,旨在突出其潜在的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent advances on carbon-based nanocomposite membranes in water and wastewater applications

Recent advances on carbon-based nanocomposite membranes in water and wastewater applications
In today's industrial world, population growth and increased industrial production have intensified the need for potable water supply and effective wastewater treatment. Due to environmental concerns, advancements in separation processes have also become necessary. Membrane processes are particularly effective in removing contaminants from entering effluents, thereby protecting water sources, and are high-performance techniques for water and wastewater treatment. The synergistic effect of carbon-based nanocomposite membranes, resulting from the properties of carbon based nanomaterials (CBNs) (such as carbon nanotubes (CNTs) and, graphene oxide (GO)) combined with the unique characteristics of membrane separation techniques, has led to improved performance of the membrane processes. The classification of the content is based on the dimensions of CBNs and membranes: zero-dimensional (0D), one-dimensional (1D) and two-dimensional (2D). Efforts have been made to review articles from the past two years. This study briefly reviews newly developed membranes using carbon nanomaterials in various membrane technologies, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane bioreactor (MBR), and membrane distillation (MD), aiming to highlight their potential success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信