熵的Kaluza-Klein离散性:对称浴和CFT子系统

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Harvendra Singh
{"title":"熵的Kaluza-Klein离散性:对称浴和CFT子系统","authors":"Harvendra Singh","doi":"10.1016/j.nuclphysb.2025.116913","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the entanglement entropy of CFT systems in contact with large bath systems, such that the complete system lives on the boundary of <span><math><mi>A</mi><mi>d</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> spacetime. We are interested in finding the HEE of a bath (system-B) in contact with a central subsystem-A. We assume that the net size of systems A and B together remains fixed while allowing variation in individual sizes. This assumption is simply guided by the conservation laws. It is found that for large bath size the island entropy term is important. However other subleading (icebergs) terms do also contribute to bath entropy. The contributions are generally not separable from each other and all such contributions add together to give rise a fixed quantity. Further when accounted properly all such contributions will form part of higher entropy branch for the bath entropy. Nevertheless the HEE of bath system should be subjected to minimality principle. The quantum minimality principle <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>q</mi><mi>u</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>u</mi><mi>m</mi></mrow></msub><mo>[</mo><mi>B</mi><mo>]</mo><mo>=</mo><msub><mrow><mo>{</mo><mi>S</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi></mrow></msub><mo>+</mo><mi>S</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>}</mo></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>, is local in nature and gives rise to the Page curve. It is also shown that the changes in bath entropy do capture Kaluza-Klein discreteness. The minimality principle would be applicable for finite temperature systems as well.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1015 ","pages":"Article 116913"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kaluza-Klein discreteness of the entropy: Symmetrical bath and CFT subsystem\",\"authors\":\"Harvendra Singh\",\"doi\":\"10.1016/j.nuclphysb.2025.116913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the entanglement entropy of CFT systems in contact with large bath systems, such that the complete system lives on the boundary of <span><math><mi>A</mi><mi>d</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> spacetime. We are interested in finding the HEE of a bath (system-B) in contact with a central subsystem-A. We assume that the net size of systems A and B together remains fixed while allowing variation in individual sizes. This assumption is simply guided by the conservation laws. It is found that for large bath size the island entropy term is important. However other subleading (icebergs) terms do also contribute to bath entropy. The contributions are generally not separable from each other and all such contributions add together to give rise a fixed quantity. Further when accounted properly all such contributions will form part of higher entropy branch for the bath entropy. Nevertheless the HEE of bath system should be subjected to minimality principle. The quantum minimality principle <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>q</mi><mi>u</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>u</mi><mi>m</mi></mrow></msub><mo>[</mo><mi>B</mi><mo>]</mo><mo>=</mo><msub><mrow><mo>{</mo><mi>S</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi></mrow></msub><mo>+</mo><mi>S</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>}</mo></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub></math></span>, is local in nature and gives rise to the Page curve. It is also shown that the changes in bath entropy do capture Kaluza-Klein discreteness. The minimality principle would be applicable for finite temperature systems as well.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1015 \",\"pages\":\"Article 116913\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325001221\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325001221","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了CFT系统与大浴系统接触时的纠缠熵,使得完整系统存在于AdSd+1时空边界上。我们感兴趣的是找到与中心子系统a接触的浴池(系统b)的HEE。我们假设系统A和系统B的净规模保持固定,同时允许个体规模的变化。这个假设仅仅是由守恒定律指导的。发现对于较大的浴池,岛熵项是重要的。然而,其他次要的(冰山)项也有助于浴熵。这些贡献通常是不可分离的,所有这些贡献加在一起产生一个固定的数量。此外,如果考虑得当,所有这些贡献都将构成高熵分支的一部分。然而,洗浴系统的HEE应遵循最小化原则。量子极小性原理quantum[B]={S[A],Stotal+S[A]}min,本质上是局域的,产生Page曲线。还表明,浴池熵的变化确实捕获了Kaluza-Klein离散性。极小性原理也适用于有限温度系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kaluza-Klein discreteness of the entropy: Symmetrical bath and CFT subsystem
We explore the entanglement entropy of CFT systems in contact with large bath systems, such that the complete system lives on the boundary of AdSd+1 spacetime. We are interested in finding the HEE of a bath (system-B) in contact with a central subsystem-A. We assume that the net size of systems A and B together remains fixed while allowing variation in individual sizes. This assumption is simply guided by the conservation laws. It is found that for large bath size the island entropy term is important. However other subleading (icebergs) terms do also contribute to bath entropy. The contributions are generally not separable from each other and all such contributions add together to give rise a fixed quantity. Further when accounted properly all such contributions will form part of higher entropy branch for the bath entropy. Nevertheless the HEE of bath system should be subjected to minimality principle. The quantum minimality principle Squantum[B]={S[A],Stotal+S[A]}min, is local in nature and gives rise to the Page curve. It is also shown that the changes in bath entropy do capture Kaluza-Klein discreteness. The minimality principle would be applicable for finite temperature systems as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信