Fredrik Fogh Sørensen, Christian Mai, Malte von Benzon, Jesper Liniger, Simon Pedersen
{"title":"水下航行器的定位问题:操作解决方案概述","authors":"Fredrik Fogh Sørensen, Christian Mai, Malte von Benzon, Jesper Liniger, Simon Pedersen","doi":"10.1016/j.oceaneng.2025.121173","DOIUrl":null,"url":null,"abstract":"<div><div>Autonomous unmanned underwater vehicles (UUVs) play a vital role in diverse underwater operations; localization is of great interest for UUVs mirroring the trend seen in self-driving surface and aerial vehicles. Unlike their land and aerial counterparts, underwater environments lack reliable Global Navigation Satellite Systems (GNSS) due to radio wave attenuation in water. Hence, alternative localization methods are imperative for both navigation and operational purposes. This study thoroughly reviews sensor technologies for underwater localization, including sonar, Doppler velocity log, cameras, and more. Different operations necessitate distinct localization accuracies and vehicle and sensor choices. Environmental factors, such as turbidity, waves, and sound disturbances, impact sensor performance. Conclusions are given on the coincidence between operational requirements and sensor specifications, with special attention to the open concerns. These considerations include aspects such as the line of sight for acoustic positioning systems and the requirement for a feature-rich environment for visual sensors. Lastly, a prediction for the future of underwater localization is given, where the tendencies indicate lower costs for sensors, making operation-specific vehicles more attractive, which aligns with an increased demand for cost-efficient autonomous offshore operations.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"330 ","pages":"Article 121173"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The localization problem for underwater vehicles: An overview of operational solutions\",\"authors\":\"Fredrik Fogh Sørensen, Christian Mai, Malte von Benzon, Jesper Liniger, Simon Pedersen\",\"doi\":\"10.1016/j.oceaneng.2025.121173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autonomous unmanned underwater vehicles (UUVs) play a vital role in diverse underwater operations; localization is of great interest for UUVs mirroring the trend seen in self-driving surface and aerial vehicles. Unlike their land and aerial counterparts, underwater environments lack reliable Global Navigation Satellite Systems (GNSS) due to radio wave attenuation in water. Hence, alternative localization methods are imperative for both navigation and operational purposes. This study thoroughly reviews sensor technologies for underwater localization, including sonar, Doppler velocity log, cameras, and more. Different operations necessitate distinct localization accuracies and vehicle and sensor choices. Environmental factors, such as turbidity, waves, and sound disturbances, impact sensor performance. Conclusions are given on the coincidence between operational requirements and sensor specifications, with special attention to the open concerns. These considerations include aspects such as the line of sight for acoustic positioning systems and the requirement for a feature-rich environment for visual sensors. Lastly, a prediction for the future of underwater localization is given, where the tendencies indicate lower costs for sensors, making operation-specific vehicles more attractive, which aligns with an increased demand for cost-efficient autonomous offshore operations.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"330 \",\"pages\":\"Article 121173\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825008868\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825008868","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The localization problem for underwater vehicles: An overview of operational solutions
Autonomous unmanned underwater vehicles (UUVs) play a vital role in diverse underwater operations; localization is of great interest for UUVs mirroring the trend seen in self-driving surface and aerial vehicles. Unlike their land and aerial counterparts, underwater environments lack reliable Global Navigation Satellite Systems (GNSS) due to radio wave attenuation in water. Hence, alternative localization methods are imperative for both navigation and operational purposes. This study thoroughly reviews sensor technologies for underwater localization, including sonar, Doppler velocity log, cameras, and more. Different operations necessitate distinct localization accuracies and vehicle and sensor choices. Environmental factors, such as turbidity, waves, and sound disturbances, impact sensor performance. Conclusions are given on the coincidence between operational requirements and sensor specifications, with special attention to the open concerns. These considerations include aspects such as the line of sight for acoustic positioning systems and the requirement for a feature-rich environment for visual sensors. Lastly, a prediction for the future of underwater localization is given, where the tendencies indicate lower costs for sensors, making operation-specific vehicles more attractive, which aligns with an increased demand for cost-efficient autonomous offshore operations.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.