超稳定Er3+/Yb3+共掺杂白钨矿单晶用于宽范围无光纤光学测温

IF 3.3 3区 物理与天体物理 Q2 OPTICS
Weiqing Wu , Yurong Xu , Xinyi Lin , Fazheng Huang , Ya-Nan Feng , Lizhen Zhang , Yan Yu , Lingyun Li
{"title":"超稳定Er3+/Yb3+共掺杂白钨矿单晶用于宽范围无光纤光学测温","authors":"Weiqing Wu ,&nbsp;Yurong Xu ,&nbsp;Xinyi Lin ,&nbsp;Fazheng Huang ,&nbsp;Ya-Nan Feng ,&nbsp;Lizhen Zhang ,&nbsp;Yan Yu ,&nbsp;Lingyun Li","doi":"10.1016/j.jlumin.2025.121251","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorescence intensity ratio (FIR)-based optical thermometry, recognized for high reliability and rapid response, has emerged as a promising non-contact temperature sensing technology. This study focuses on enhancing the performance of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped scheelite-type single crystals (NaY(WO<sub>4</sub>)<sub>2</sub> and NaGd(WO<sub>4</sub>)<sub>2</sub>) for wide-range optical temperature sensing. By employing a spontaneous nucleation method, we synthesized single crystals with optimized doping concentrations (1 % Er<sup>3+</sup>/60 % Yb<sup>3+</sup> for NYW and 3 % Er<sup>3+</sup>/70 % Yb<sup>3+</sup> for NGW), achieving intense green upconversion (UC) emissions at 530 nm (<sup>2</sup>H<sub>11/2</sub> → <sup>4</sup>I<sub>15/2</sub>) and 552 nm (<sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub>). The single crystals exhibited high Yb<sup>3+</sup>→Er<sup>3+</sup> energy transfer efficiencies of 11.02 % (NYW: 1 % Er<sup>3+</sup>, 60 % Yb<sup>3+</sup>) and 20.65 % (NGW: 3 % Er<sup>3+</sup>, 70 % Yb<sup>3+</sup>), enabling robust UC luminescence even under harsh conditions (pH = 1/13, 72 h) and thermal shocks (800 °C, 8 cycles). Temperature-dependent FIR analysis of thermally coupled energy levels (<sup>2</sup>H<sub>11/2</sub> and <sup>4</sup>S<sub>3/2</sub>) revealed linear ln(FIR) vs. 1/T relationships, with maximum relative sensitivities of 1.18 % K<sup>−1</sup> (NYW) and 1.12 % K<sup>−1</sup> (NGW) in 298–578 K. A prototype sensor utilizing NGW: 3 %Er<sup>3+</sup>, 70 %Yb<sup>3+</sup> single crystal demonstrated practical feasibility across 80–780 K, eliminating fiber-optic requirements due to high UC efficiency. These results highlight scheelite-type single crystals as superior candidates for precision optical thermometry in extreme environments.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"283 ","pages":"Article 121251"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-stable Er3+/Yb3+ Co-doped scheelite single crystals for wide-range fiber-free optical thermometry\",\"authors\":\"Weiqing Wu ,&nbsp;Yurong Xu ,&nbsp;Xinyi Lin ,&nbsp;Fazheng Huang ,&nbsp;Ya-Nan Feng ,&nbsp;Lizhen Zhang ,&nbsp;Yan Yu ,&nbsp;Lingyun Li\",\"doi\":\"10.1016/j.jlumin.2025.121251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluorescence intensity ratio (FIR)-based optical thermometry, recognized for high reliability and rapid response, has emerged as a promising non-contact temperature sensing technology. This study focuses on enhancing the performance of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped scheelite-type single crystals (NaY(WO<sub>4</sub>)<sub>2</sub> and NaGd(WO<sub>4</sub>)<sub>2</sub>) for wide-range optical temperature sensing. By employing a spontaneous nucleation method, we synthesized single crystals with optimized doping concentrations (1 % Er<sup>3+</sup>/60 % Yb<sup>3+</sup> for NYW and 3 % Er<sup>3+</sup>/70 % Yb<sup>3+</sup> for NGW), achieving intense green upconversion (UC) emissions at 530 nm (<sup>2</sup>H<sub>11/2</sub> → <sup>4</sup>I<sub>15/2</sub>) and 552 nm (<sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub>). The single crystals exhibited high Yb<sup>3+</sup>→Er<sup>3+</sup> energy transfer efficiencies of 11.02 % (NYW: 1 % Er<sup>3+</sup>, 60 % Yb<sup>3+</sup>) and 20.65 % (NGW: 3 % Er<sup>3+</sup>, 70 % Yb<sup>3+</sup>), enabling robust UC luminescence even under harsh conditions (pH = 1/13, 72 h) and thermal shocks (800 °C, 8 cycles). Temperature-dependent FIR analysis of thermally coupled energy levels (<sup>2</sup>H<sub>11/2</sub> and <sup>4</sup>S<sub>3/2</sub>) revealed linear ln(FIR) vs. 1/T relationships, with maximum relative sensitivities of 1.18 % K<sup>−1</sup> (NYW) and 1.12 % K<sup>−1</sup> (NGW) in 298–578 K. A prototype sensor utilizing NGW: 3 %Er<sup>3+</sup>, 70 %Yb<sup>3+</sup> single crystal demonstrated practical feasibility across 80–780 K, eliminating fiber-optic requirements due to high UC efficiency. These results highlight scheelite-type single crystals as superior candidates for precision optical thermometry in extreme environments.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"283 \",\"pages\":\"Article 121251\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231325001917\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231325001917","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于荧光强度比(FIR)的光学测温技术具有高可靠性和快速响应的特点,是一种很有前途的非接触式测温技术。本研究的重点是提高Er3+/Yb3+共掺杂白钨矿型单晶(NaY(WO4)2和NaGd(WO4)2)的宽范围光学温度传感性能。通过自发成核的方法,我们合成了具有最佳掺杂浓度(NYW为1% Er3+/ 60% Yb3+, NGW为3% Er3+/ 70% Yb3+)的单晶,在530 nm (2H11/2→4I15/2)和552 nm (4S3/2→4I15/2)处实现了强烈的绿色上转换(UC)发射。单晶表现出较高的Yb3+→Er3+能量传递效率,分别为11.02% (NYW: 1% Er3+, 60% Yb3+)和20.65% (NGW: 3% Er3+, 70% Yb3+),即使在恶劣条件下(pH = 1/13, 72 h)和热冲击(800°C, 8个循环)下也能实现稳定的UC发光。热耦合能级(2H11/2和4S3/2)的温度相关FIR分析显示ln(FIR)与1/T呈线性关系,298-578 K的最大相对灵敏度为1.18% K−1 (NYW)和1.12% K−1 (NGW)。利用NGW: 3% Er3+, 70% Yb3+单晶的原型传感器在80-780 K范围内证明了实际可行性,消除了由于UC效率高而对光纤的要求。这些结果突出了白钨矿型单晶作为极端环境下精密光学测温的优越候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra-stable Er3+/Yb3+ Co-doped scheelite single crystals for wide-range fiber-free optical thermometry

Ultra-stable Er3+/Yb3+ Co-doped scheelite single crystals for wide-range fiber-free optical thermometry
Fluorescence intensity ratio (FIR)-based optical thermometry, recognized for high reliability and rapid response, has emerged as a promising non-contact temperature sensing technology. This study focuses on enhancing the performance of Er3+/Yb3+ co-doped scheelite-type single crystals (NaY(WO4)2 and NaGd(WO4)2) for wide-range optical temperature sensing. By employing a spontaneous nucleation method, we synthesized single crystals with optimized doping concentrations (1 % Er3+/60 % Yb3+ for NYW and 3 % Er3+/70 % Yb3+ for NGW), achieving intense green upconversion (UC) emissions at 530 nm (2H11/2 → 4I15/2) and 552 nm (4S3/2 → 4I15/2). The single crystals exhibited high Yb3+→Er3+ energy transfer efficiencies of 11.02 % (NYW: 1 % Er3+, 60 % Yb3+) and 20.65 % (NGW: 3 % Er3+, 70 % Yb3+), enabling robust UC luminescence even under harsh conditions (pH = 1/13, 72 h) and thermal shocks (800 °C, 8 cycles). Temperature-dependent FIR analysis of thermally coupled energy levels (2H11/2 and 4S3/2) revealed linear ln(FIR) vs. 1/T relationships, with maximum relative sensitivities of 1.18 % K−1 (NYW) and 1.12 % K−1 (NGW) in 298–578 K. A prototype sensor utilizing NGW: 3 %Er3+, 70 %Yb3+ single crystal demonstrated practical feasibility across 80–780 K, eliminating fiber-optic requirements due to high UC efficiency. These results highlight scheelite-type single crystals as superior candidates for precision optical thermometry in extreme environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信