绿色耐用锌离子电池中氧化还原活性聚苯胺插层氧化钒加速锌离子扩散动力学

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Ruhan Zhao , Zhoutai Shang , Xinzhi Wang , Zhijian Li , Rongqian Kuang , Ke Lu , Hong Zhang , Songtao Lu
{"title":"绿色耐用锌离子电池中氧化还原活性聚苯胺插层氧化钒加速锌离子扩散动力学","authors":"Ruhan Zhao ,&nbsp;Zhoutai Shang ,&nbsp;Xinzhi Wang ,&nbsp;Zhijian Li ,&nbsp;Rongqian Kuang ,&nbsp;Ke Lu ,&nbsp;Hong Zhang ,&nbsp;Songtao Lu","doi":"10.1016/j.jpowsour.2025.237074","DOIUrl":null,"url":null,"abstract":"<div><div>Layered vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) has caused considerable attention owing to rich redox chemistry of vanadium that enables high specific capacities in aqueous zinc batteries. However, it is still confronted with inherent narrow interlayer spacing, poor conductivity and sluggish diffusion kinetics of Zn<sup>2+</sup> due to the strong electrostatic interactions in layered V<sub>2</sub>O<sub>5</sub>. Herein, we propose a high-capacity nanosheet cathode by preparing an in-situ intercalation polymerization of Fe(CN)<sub>6</sub><sup>4−</sup>-doped polyaniline within the interlayers of V<sub>2</sub>O<sub>5</sub> to expand the interlayer spacing and provide abundant active site, which enables highly reversible and ultrafast zinc ions (de)intercalation processes. Especially, the spontaneous formation of zinc ferricyanide Zn<sub>x+1</sub>[Fe<sup>III/II</sup>(CN)<sub>6</sub>] within the polyaniline framework acting as a redox mediator exhibited faster Zn<sup>2+</sup> (de)intercalation kinetics by catalyzing the reduction of V<sub>2</sub>O<sub>5</sub> during discharging process, thereby shortening the Zn<sup>2+</sup> diffusion path and accelerating its diffusion kinetics. Moreover, this nanosheet cathode can deliver a high specific capacity of 503 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and exhibit a capacity retention of 92 % over 3000 cycles at 1.5 A g<sup>−1</sup>. The remarkable electrochemical performance is attributed to the layered structure of Fe(CN)<sub>6</sub><sup>4−</sup>-PANI-V<sub>2</sub>O<sub>5</sub> constructed with large interlayer spacing and active filler, which enables the rapid (de)intercalation of zinc ions with a negligible structure change.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"644 ","pages":"Article 237074"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the kinetics of zinc-ion diffusion via redox-active polyaniline intercalated vanadium oxide for green durable zinc-ion batteries\",\"authors\":\"Ruhan Zhao ,&nbsp;Zhoutai Shang ,&nbsp;Xinzhi Wang ,&nbsp;Zhijian Li ,&nbsp;Rongqian Kuang ,&nbsp;Ke Lu ,&nbsp;Hong Zhang ,&nbsp;Songtao Lu\",\"doi\":\"10.1016/j.jpowsour.2025.237074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Layered vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) has caused considerable attention owing to rich redox chemistry of vanadium that enables high specific capacities in aqueous zinc batteries. However, it is still confronted with inherent narrow interlayer spacing, poor conductivity and sluggish diffusion kinetics of Zn<sup>2+</sup> due to the strong electrostatic interactions in layered V<sub>2</sub>O<sub>5</sub>. Herein, we propose a high-capacity nanosheet cathode by preparing an in-situ intercalation polymerization of Fe(CN)<sub>6</sub><sup>4−</sup>-doped polyaniline within the interlayers of V<sub>2</sub>O<sub>5</sub> to expand the interlayer spacing and provide abundant active site, which enables highly reversible and ultrafast zinc ions (de)intercalation processes. Especially, the spontaneous formation of zinc ferricyanide Zn<sub>x+1</sub>[Fe<sup>III/II</sup>(CN)<sub>6</sub>] within the polyaniline framework acting as a redox mediator exhibited faster Zn<sup>2+</sup> (de)intercalation kinetics by catalyzing the reduction of V<sub>2</sub>O<sub>5</sub> during discharging process, thereby shortening the Zn<sup>2+</sup> diffusion path and accelerating its diffusion kinetics. Moreover, this nanosheet cathode can deliver a high specific capacity of 503 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and exhibit a capacity retention of 92 % over 3000 cycles at 1.5 A g<sup>−1</sup>. The remarkable electrochemical performance is attributed to the layered structure of Fe(CN)<sub>6</sub><sup>4−</sup>-PANI-V<sub>2</sub>O<sub>5</sub> constructed with large interlayer spacing and active filler, which enables the rapid (de)intercalation of zinc ions with a negligible structure change.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"644 \",\"pages\":\"Article 237074\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325009103\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325009103","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

层状五氧化二钒(V2O5)由于其丰富的氧化还原化学性质而引起了人们的广泛关注。然而,由于层状V2O5中的强静电相互作用,仍然存在固有的层间距窄、电导率差和Zn2+扩散动力学缓慢的问题。在此,我们提出了一种高容量的纳米片阴极,通过在V2O5的层间制备Fe(CN)64−掺杂聚苯胺的原位插层聚合,以扩大层间间距并提供丰富的活性位点,从而实现高可逆和超快的锌离子(de)插层过程。特别是,作为氧化还原介质的聚苯胺框架内自发生成的铁氰化锌Znx+1[FeIII/II(CN)6]在放电过程中通过催化V2O5的还原,表现出更快的Zn2+ (de)插层动力学,从而缩短了Zn2+的扩散路径,加速了其扩散动力学。此外,该纳米片阴极在0.5 a g−1下可提供503 mAh g−1的高比容量,在1.5 a g−1下可在3000次循环中保持92%的容量。Fe(CN)64−-PANI-V2O5具有层状结构,层间间距大,结构变化小,可以快速(脱)插层,具有显著的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerating the kinetics of zinc-ion diffusion via redox-active polyaniline intercalated vanadium oxide for green durable zinc-ion batteries

Accelerating the kinetics of zinc-ion diffusion via redox-active polyaniline intercalated vanadium oxide for green durable zinc-ion batteries
Layered vanadium pentoxide (V2O5) has caused considerable attention owing to rich redox chemistry of vanadium that enables high specific capacities in aqueous zinc batteries. However, it is still confronted with inherent narrow interlayer spacing, poor conductivity and sluggish diffusion kinetics of Zn2+ due to the strong electrostatic interactions in layered V2O5. Herein, we propose a high-capacity nanosheet cathode by preparing an in-situ intercalation polymerization of Fe(CN)64−-doped polyaniline within the interlayers of V2O5 to expand the interlayer spacing and provide abundant active site, which enables highly reversible and ultrafast zinc ions (de)intercalation processes. Especially, the spontaneous formation of zinc ferricyanide Znx+1[FeIII/II(CN)6] within the polyaniline framework acting as a redox mediator exhibited faster Zn2+ (de)intercalation kinetics by catalyzing the reduction of V2O5 during discharging process, thereby shortening the Zn2+ diffusion path and accelerating its diffusion kinetics. Moreover, this nanosheet cathode can deliver a high specific capacity of 503 mAh g−1 at 0.5 A g−1 and exhibit a capacity retention of 92 % over 3000 cycles at 1.5 A g−1. The remarkable electrochemical performance is attributed to the layered structure of Fe(CN)64−-PANI-V2O5 constructed with large interlayer spacing and active filler, which enables the rapid (de)intercalation of zinc ions with a negligible structure change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信