{"title":"以浸没式冷却为重点的电池热管理综述","authors":"Zhicheng Xin , Weiyu Tang , Wen Yao , Zan Wu","doi":"10.1016/j.rser.2025.115751","DOIUrl":null,"url":null,"abstract":"<div><div>The performance, cycle life and safety of batteries are strongly influenced by temperature. However, fast charging and discharging can significantly increase heat generation, causing the battery temperature to rise rapidly. Therefore, it is essential to employ suitable battery thermal management systems to maintain the battery temperature within an ideal range. Temperature uniformity plays a critical role in determining battery cycle life and operational performance. To evaluate the limitations of temperature uniformity across different battery thermal management systems, this review provides a comprehensive comparison of various cooling techniques. Among these, immersion cooling demonstrates the best temperature uniformity due to its high thermal efficiency and low thermal resistance. The two-phase immersion cooling system could maintain temperature and its uniformity within an ideal range even during ultra-high charging and discharging rates of up to 20C. Additionally, this review compares and evaluates different dielectric fluids used in immersion cooling to discuss the most adaptable coolants for battery systems and summarizes the latest developments in immersion cooling. Besides, the advantages and disadvantages of immersion cooling are summarized for battery thermal management regarding temperature fluctuation, temperature maldistribution under extreme conditions, and thermal runaway. Furthermore, the economic and environmental benefits of various battery thermal management systems are thoroughly analyzed. Immersion cooling demonstrates the lowest carbon footprint and superior environmental performance. Finally, the review highlights the critical challenges and future directions for immersion cooling, including advancements in dielectric fluids, system stability and integration, and battery safety. This study provides a comprehensive and up-to-date review of battery immersion cooling, offering valuable insights to advance battery thermal management systems and support the transition toward a sustainable economy and zero emissions.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"217 ","pages":"Article 115751"},"PeriodicalIF":16.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of thermal management of batteries with a focus on immersion cooling\",\"authors\":\"Zhicheng Xin , Weiyu Tang , Wen Yao , Zan Wu\",\"doi\":\"10.1016/j.rser.2025.115751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance, cycle life and safety of batteries are strongly influenced by temperature. However, fast charging and discharging can significantly increase heat generation, causing the battery temperature to rise rapidly. Therefore, it is essential to employ suitable battery thermal management systems to maintain the battery temperature within an ideal range. Temperature uniformity plays a critical role in determining battery cycle life and operational performance. To evaluate the limitations of temperature uniformity across different battery thermal management systems, this review provides a comprehensive comparison of various cooling techniques. Among these, immersion cooling demonstrates the best temperature uniformity due to its high thermal efficiency and low thermal resistance. The two-phase immersion cooling system could maintain temperature and its uniformity within an ideal range even during ultra-high charging and discharging rates of up to 20C. Additionally, this review compares and evaluates different dielectric fluids used in immersion cooling to discuss the most adaptable coolants for battery systems and summarizes the latest developments in immersion cooling. Besides, the advantages and disadvantages of immersion cooling are summarized for battery thermal management regarding temperature fluctuation, temperature maldistribution under extreme conditions, and thermal runaway. Furthermore, the economic and environmental benefits of various battery thermal management systems are thoroughly analyzed. Immersion cooling demonstrates the lowest carbon footprint and superior environmental performance. Finally, the review highlights the critical challenges and future directions for immersion cooling, including advancements in dielectric fluids, system stability and integration, and battery safety. This study provides a comprehensive and up-to-date review of battery immersion cooling, offering valuable insights to advance battery thermal management systems and support the transition toward a sustainable economy and zero emissions.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"217 \",\"pages\":\"Article 115751\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032125004241\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125004241","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A review of thermal management of batteries with a focus on immersion cooling
The performance, cycle life and safety of batteries are strongly influenced by temperature. However, fast charging and discharging can significantly increase heat generation, causing the battery temperature to rise rapidly. Therefore, it is essential to employ suitable battery thermal management systems to maintain the battery temperature within an ideal range. Temperature uniformity plays a critical role in determining battery cycle life and operational performance. To evaluate the limitations of temperature uniformity across different battery thermal management systems, this review provides a comprehensive comparison of various cooling techniques. Among these, immersion cooling demonstrates the best temperature uniformity due to its high thermal efficiency and low thermal resistance. The two-phase immersion cooling system could maintain temperature and its uniformity within an ideal range even during ultra-high charging and discharging rates of up to 20C. Additionally, this review compares and evaluates different dielectric fluids used in immersion cooling to discuss the most adaptable coolants for battery systems and summarizes the latest developments in immersion cooling. Besides, the advantages and disadvantages of immersion cooling are summarized for battery thermal management regarding temperature fluctuation, temperature maldistribution under extreme conditions, and thermal runaway. Furthermore, the economic and environmental benefits of various battery thermal management systems are thoroughly analyzed. Immersion cooling demonstrates the lowest carbon footprint and superior environmental performance. Finally, the review highlights the critical challenges and future directions for immersion cooling, including advancements in dielectric fluids, system stability and integration, and battery safety. This study provides a comprehensive and up-to-date review of battery immersion cooling, offering valuable insights to advance battery thermal management systems and support the transition toward a sustainable economy and zero emissions.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.