分式算子组成的神经网络近似及其在分式欧拉-伯努利梁方程中的应用

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Anna Nowak , Dominika Kustal , HongGuang Sun , Tomasz Blaszczyk
{"title":"分式算子组成的神经网络近似及其在分式欧拉-伯努利梁方程中的应用","authors":"Anna Nowak ,&nbsp;Dominika Kustal ,&nbsp;HongGuang Sun ,&nbsp;Tomasz Blaszczyk","doi":"10.1016/j.amc.2025.129475","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a new approach to approximation of the left and the right fractional Riemann - Liouville integrals as well as the compositions of these two operators, based on a shallow neural network with <span><math><mi>R</mi><mi>e</mi><mi>L</mi><mi>U</mi></math></span> as an activation function. We apply the proposed method to the fractional Euler - Bernoulli beam equation with fixed-supported and fixed-free ends, and we provide numerical simulations for constant, power and trigonometric functions. Finally, we compare the obtained results with the exact solutions of the considered problems.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"501 ","pages":"Article 129475"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network approximation of the composition of fractional operators and its application to the fractional Euler-Bernoulli beam equation\",\"authors\":\"Anna Nowak ,&nbsp;Dominika Kustal ,&nbsp;HongGuang Sun ,&nbsp;Tomasz Blaszczyk\",\"doi\":\"10.1016/j.amc.2025.129475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a new approach to approximation of the left and the right fractional Riemann - Liouville integrals as well as the compositions of these two operators, based on a shallow neural network with <span><math><mi>R</mi><mi>e</mi><mi>L</mi><mi>U</mi></math></span> as an activation function. We apply the proposed method to the fractional Euler - Bernoulli beam equation with fixed-supported and fixed-free ends, and we provide numerical simulations for constant, power and trigonometric functions. Finally, we compare the obtained results with the exact solutions of the considered problems.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"501 \",\"pages\":\"Article 129475\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325002012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的逼近左、右分数阶Riemann - Liouville积分以及这两个算子的组合的方法,该方法基于一个以ReLU为激活函数的浅神经网络。将该方法应用于具有固定支承端和固定自由端的分数阶欧拉-伯努利梁方程,并对常数函数、幂函数和三角函数进行了数值模拟。最后,我们将所得结果与所考虑问题的精确解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network approximation of the composition of fractional operators and its application to the fractional Euler-Bernoulli beam equation
In this paper, we propose a new approach to approximation of the left and the right fractional Riemann - Liouville integrals as well as the compositions of these two operators, based on a shallow neural network with ReLU as an activation function. We apply the proposed method to the fractional Euler - Bernoulli beam equation with fixed-supported and fixed-free ends, and we provide numerical simulations for constant, power and trigonometric functions. Finally, we compare the obtained results with the exact solutions of the considered problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信