Rongjun Liu , Jinxing Luo , Xiaolong Fang , Bin Luo , Zhenhua Jiao , Lingchao Meng
{"title":"采用合适导流结构的组合管电极改进电化学钻深孔","authors":"Rongjun Liu , Jinxing Luo , Xiaolong Fang , Bin Luo , Zhenhua Jiao , Lingchao Meng","doi":"10.1016/j.precisioneng.2025.04.017","DOIUrl":null,"url":null,"abstract":"<div><div>Deep holes with high quality are extensively demanded in such industrial applications as aviation. Electrochemical drilling (ECD) is a promising technique for fabricating deep holes in difficult-to-machine materials. However, at the initial machining stage, the electrolyte flow in the inter-electrode gap changes dramatically from expansion flow to converging flow, which may affect the machining process. To address this, a leading flow structure is developed to confine the electrolyte flow when machining the hole entrance, which helps to improve processing stability. A height of 10.0 mm for the leading flow structure is found to be sufficient for ensuring the fine entrance profile and machining stability. Furthermore, the normal tube electrode commonly causes misdistribution of electrolyte flow and current density at the hole bottom, generating defects such as spikes and striations, which limits its application in deep holes requiring a flat bottom. Therefore, a combinatorial tube electrode is proposed to enhance the distribution of flow and electric fields by changing the cross-section at the tube tip, resulting in a defect-free flat bottom. Based on these findings, two typical deep holes, a through hole and a flat-bottomed blind hole, were successfully fabricated with high quality, as so the machining capability and processing stability had been prominently enhanced.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"95 ","pages":"Pages 59-74"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of electrochemical drilling deep holes using combinatorial tube electrode with a suitable leading flow structure\",\"authors\":\"Rongjun Liu , Jinxing Luo , Xiaolong Fang , Bin Luo , Zhenhua Jiao , Lingchao Meng\",\"doi\":\"10.1016/j.precisioneng.2025.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep holes with high quality are extensively demanded in such industrial applications as aviation. Electrochemical drilling (ECD) is a promising technique for fabricating deep holes in difficult-to-machine materials. However, at the initial machining stage, the electrolyte flow in the inter-electrode gap changes dramatically from expansion flow to converging flow, which may affect the machining process. To address this, a leading flow structure is developed to confine the electrolyte flow when machining the hole entrance, which helps to improve processing stability. A height of 10.0 mm for the leading flow structure is found to be sufficient for ensuring the fine entrance profile and machining stability. Furthermore, the normal tube electrode commonly causes misdistribution of electrolyte flow and current density at the hole bottom, generating defects such as spikes and striations, which limits its application in deep holes requiring a flat bottom. Therefore, a combinatorial tube electrode is proposed to enhance the distribution of flow and electric fields by changing the cross-section at the tube tip, resulting in a defect-free flat bottom. Based on these findings, two typical deep holes, a through hole and a flat-bottomed blind hole, were successfully fabricated with high quality, as so the machining capability and processing stability had been prominently enhanced.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"95 \",\"pages\":\"Pages 59-74\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635925001230\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925001230","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Improvement of electrochemical drilling deep holes using combinatorial tube electrode with a suitable leading flow structure
Deep holes with high quality are extensively demanded in such industrial applications as aviation. Electrochemical drilling (ECD) is a promising technique for fabricating deep holes in difficult-to-machine materials. However, at the initial machining stage, the electrolyte flow in the inter-electrode gap changes dramatically from expansion flow to converging flow, which may affect the machining process. To address this, a leading flow structure is developed to confine the electrolyte flow when machining the hole entrance, which helps to improve processing stability. A height of 10.0 mm for the leading flow structure is found to be sufficient for ensuring the fine entrance profile and machining stability. Furthermore, the normal tube electrode commonly causes misdistribution of electrolyte flow and current density at the hole bottom, generating defects such as spikes and striations, which limits its application in deep holes requiring a flat bottom. Therefore, a combinatorial tube electrode is proposed to enhance the distribution of flow and electric fields by changing the cross-section at the tube tip, resulting in a defect-free flat bottom. Based on these findings, two typical deep holes, a through hole and a flat-bottomed blind hole, were successfully fabricated with high quality, as so the machining capability and processing stability had been prominently enhanced.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.