Caroline Gwaro, Caroline Ndung’U, Petia Bobadova-Parvanova, Dylan Goliber, Quynh Do, Ashley R. Walker, Evan Murders, Daniel LaMaster, Frank R. Fronczek, Jayne Garno and Maria da Graça H. Vicente*,
{"title":"硝基取代对BODIPY染料光谱和自组装性能的影响","authors":"Caroline Gwaro, Caroline Ndung’U, Petia Bobadova-Parvanova, Dylan Goliber, Quynh Do, Ashley R. Walker, Evan Murders, Daniel LaMaster, Frank R. Fronczek, Jayne Garno and Maria da Graça H. Vicente*, ","doi":"10.1021/acsomega.4c0879910.1021/acsomega.4c08799","DOIUrl":null,"url":null,"abstract":"<p >A series of boron dipyrromethene (BODIPY) dyes were nitrated in high yields using nitronium tetrafluoroborate at positions 2, 3, and 2,6 of the BODIPY core. This method allows for the regioselective nitration of the pyrrolic positions under milder conditions than previously reported methods. The photophysical properties and electronic transitions of these BODIPYs were investigated by using UV–vis spectroscopy, fluorescence spectroscopy, and density-functional theory (DFT) calculations. The introduction of one nitro group dramatically increases the dipole moment of the molecule, induces marked blue shifts in the absorption and emission bands, decreases the molar absorptivity, and increases the Stokes shifts of the BODIPYs. When a second nitro group is symmetrically introduced, the calculated dipole moments of the BODIPYs decrease in both the ground and excited states. Our studies show that the spectroscopic and self-assembly properties of nitro-substituted BODIPYs are highly dependent on solvent polarity and polarizability. In a polar organic solvent, nitro-substitution tends to quench the characteristic fluorescence of BODIPYs, while in a nonpolar solvent, significantly higher absolute fluorescence quantum yields are observed. On the other hand, aggregates are formed in aqueous solution, as observed by atomic force microscopy (AFM). Our results suggest a potential application of nitro-BODIPYs as polarity sensors.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"14723–14737 14723–14737"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08799","citationCount":"0","resultStr":"{\"title\":\"Effects of Nitro-Substitution on the Spectroscopic and Self-Assembly Properties of BODIPY Dyes\",\"authors\":\"Caroline Gwaro, Caroline Ndung’U, Petia Bobadova-Parvanova, Dylan Goliber, Quynh Do, Ashley R. Walker, Evan Murders, Daniel LaMaster, Frank R. Fronczek, Jayne Garno and Maria da Graça H. Vicente*, \",\"doi\":\"10.1021/acsomega.4c0879910.1021/acsomega.4c08799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A series of boron dipyrromethene (BODIPY) dyes were nitrated in high yields using nitronium tetrafluoroborate at positions 2, 3, and 2,6 of the BODIPY core. This method allows for the regioselective nitration of the pyrrolic positions under milder conditions than previously reported methods. The photophysical properties and electronic transitions of these BODIPYs were investigated by using UV–vis spectroscopy, fluorescence spectroscopy, and density-functional theory (DFT) calculations. The introduction of one nitro group dramatically increases the dipole moment of the molecule, induces marked blue shifts in the absorption and emission bands, decreases the molar absorptivity, and increases the Stokes shifts of the BODIPYs. When a second nitro group is symmetrically introduced, the calculated dipole moments of the BODIPYs decrease in both the ground and excited states. Our studies show that the spectroscopic and self-assembly properties of nitro-substituted BODIPYs are highly dependent on solvent polarity and polarizability. In a polar organic solvent, nitro-substitution tends to quench the characteristic fluorescence of BODIPYs, while in a nonpolar solvent, significantly higher absolute fluorescence quantum yields are observed. On the other hand, aggregates are formed in aqueous solution, as observed by atomic force microscopy (AFM). Our results suggest a potential application of nitro-BODIPYs as polarity sensors.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 15\",\"pages\":\"14723–14737 14723–14737\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08799\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c08799\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08799","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of Nitro-Substitution on the Spectroscopic and Self-Assembly Properties of BODIPY Dyes
A series of boron dipyrromethene (BODIPY) dyes were nitrated in high yields using nitronium tetrafluoroborate at positions 2, 3, and 2,6 of the BODIPY core. This method allows for the regioselective nitration of the pyrrolic positions under milder conditions than previously reported methods. The photophysical properties and electronic transitions of these BODIPYs were investigated by using UV–vis spectroscopy, fluorescence spectroscopy, and density-functional theory (DFT) calculations. The introduction of one nitro group dramatically increases the dipole moment of the molecule, induces marked blue shifts in the absorption and emission bands, decreases the molar absorptivity, and increases the Stokes shifts of the BODIPYs. When a second nitro group is symmetrically introduced, the calculated dipole moments of the BODIPYs decrease in both the ground and excited states. Our studies show that the spectroscopic and self-assembly properties of nitro-substituted BODIPYs are highly dependent on solvent polarity and polarizability. In a polar organic solvent, nitro-substitution tends to quench the characteristic fluorescence of BODIPYs, while in a nonpolar solvent, significantly higher absolute fluorescence quantum yields are observed. On the other hand, aggregates are formed in aqueous solution, as observed by atomic force microscopy (AFM). Our results suggest a potential application of nitro-BODIPYs as polarity sensors.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.