利用机器学习模拟PFAS在土壤中的吸附

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Joel Fabregat-Palau*, Amirhossein Ershadi*, Michael Finkel, Anna Rigol, Miquel Vidal and Peter Grathwohl, 
{"title":"利用机器学习模拟PFAS在土壤中的吸附","authors":"Joel Fabregat-Palau*,&nbsp;Amirhossein Ershadi*,&nbsp;Michael Finkel,&nbsp;Anna Rigol,&nbsp;Miquel Vidal and Peter Grathwohl,&nbsp;","doi":"10.1021/acs.est.4c1328410.1021/acs.est.4c13284","DOIUrl":null,"url":null,"abstract":"<p >In this study, we introduce PFASorptionML, a novel machine learning (ML) tool developed to predict solid–liquid distribution coefficients (<i>K</i><sub>d</sub>) for per- and polyfluoroalkyl substances (PFAS) in soils. Leveraging a data set of 1,274 <i>K</i><sub>d</sub> entries for PFAS in soils and sediments, including compounds such as trifluoroacetate, cationic, and zwitterionic PFAS, and neutral fluorotelomer alcohols, the model incorporates PFAS-specific properties such as molecular weight, hydrophobicity, and p<i>K</i><sub>a</sub>, alongside soil characteristics like pH, texture, organic carbon content, and cation exchange capacity. Sensitivity analysis reveals that molecular weight, hydrophobicity, and organic carbon content are the most significant factors influencing sorption behavior, while charge density and mineral soil fraction have comparatively minor effects. The model demonstrates high predictive performance, with RPD values exceeding 3.16 across validation data sets, outperforming existing tools in accuracy and scope. Notably, PFAS chain length and functional group variability significantly influence <i>K</i><sub>d</sub>, with longer chain lengths and higher hydrophobicity positively correlating with <i>K</i><sub>d</sub>. By integrating location-specific soil repository data, the model enables the generation of spatial <i>K</i><sub>d</sub> maps for selected PFAS species. These capabilities are implemented in the online platform PFASorptionML, providing researchers and practitioners with a valuable resource for conducting environmental risk assessments of PFAS contamination in soils.</p><p >A comprehensive dataset of PFAS solid−liquid distribution coefficients (<i>K</i><sub>d</sub>) in soils was used to develop a machine learning model, offering <i>K</i><sub>d</sub> (PFAS) predictions that are useful for environmental management.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 15","pages":"7678–7687 7678–7687"},"PeriodicalIF":11.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c13284","citationCount":"0","resultStr":"{\"title\":\"Modeling PFAS Sorption in Soils Using Machine Learning\",\"authors\":\"Joel Fabregat-Palau*,&nbsp;Amirhossein Ershadi*,&nbsp;Michael Finkel,&nbsp;Anna Rigol,&nbsp;Miquel Vidal and Peter Grathwohl,&nbsp;\",\"doi\":\"10.1021/acs.est.4c1328410.1021/acs.est.4c13284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we introduce PFASorptionML, a novel machine learning (ML) tool developed to predict solid–liquid distribution coefficients (<i>K</i><sub>d</sub>) for per- and polyfluoroalkyl substances (PFAS) in soils. Leveraging a data set of 1,274 <i>K</i><sub>d</sub> entries for PFAS in soils and sediments, including compounds such as trifluoroacetate, cationic, and zwitterionic PFAS, and neutral fluorotelomer alcohols, the model incorporates PFAS-specific properties such as molecular weight, hydrophobicity, and p<i>K</i><sub>a</sub>, alongside soil characteristics like pH, texture, organic carbon content, and cation exchange capacity. Sensitivity analysis reveals that molecular weight, hydrophobicity, and organic carbon content are the most significant factors influencing sorption behavior, while charge density and mineral soil fraction have comparatively minor effects. The model demonstrates high predictive performance, with RPD values exceeding 3.16 across validation data sets, outperforming existing tools in accuracy and scope. Notably, PFAS chain length and functional group variability significantly influence <i>K</i><sub>d</sub>, with longer chain lengths and higher hydrophobicity positively correlating with <i>K</i><sub>d</sub>. By integrating location-specific soil repository data, the model enables the generation of spatial <i>K</i><sub>d</sub> maps for selected PFAS species. These capabilities are implemented in the online platform PFASorptionML, providing researchers and practitioners with a valuable resource for conducting environmental risk assessments of PFAS contamination in soils.</p><p >A comprehensive dataset of PFAS solid−liquid distribution coefficients (<i>K</i><sub>d</sub>) in soils was used to develop a machine learning model, offering <i>K</i><sub>d</sub> (PFAS) predictions that are useful for environmental management.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 15\",\"pages\":\"7678–7687 7678–7687\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c13284\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c13284\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c13284","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入了PFASorptionML,这是一种新的机器学习(ML)工具,用于预测土壤中全氟烷基和多氟烷基物质(PFAS)的固液分布系数(Kd)。利用土壤和沉积物中PFAS的1,274 Kd条目数据集,包括三氟乙酸盐、阳离子和两性离子PFAS以及中性氟端聚物醇等化合物,该模型结合了PFAS的特定属性,如分子量、疏水性和pKa,以及pH、质地、有机碳含量和阳离子交换能力等土壤特征。敏感性分析表明,分子量、疏水性和有机碳含量是影响吸附行为最显著的因素,电荷密度和矿质土组分的影响相对较小。该模型具有很高的预测性能,在验证数据集上的RPD值超过3.16,在准确性和范围上优于现有工具。值得注意的是,PFAS链长和官能团变异显著影响Kd,链长越长、疏水性越高与Kd呈正相关。通过整合特定位置的土壤储存库数据,该模型能够生成选定PFAS物种的空间Kd图。这些功能在在线平台PFASorptionML中实现,为研究人员和从业者提供了对土壤中PFAS污染进行环境风险评估的宝贵资源。利用土壤中PFAS固液分布系数(Kd)的综合数据集开发了一个机器学习模型,提供了对环境管理有用的Kd (PFAS)预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling PFAS Sorption in Soils Using Machine Learning

In this study, we introduce PFASorptionML, a novel machine learning (ML) tool developed to predict solid–liquid distribution coefficients (Kd) for per- and polyfluoroalkyl substances (PFAS) in soils. Leveraging a data set of 1,274 Kd entries for PFAS in soils and sediments, including compounds such as trifluoroacetate, cationic, and zwitterionic PFAS, and neutral fluorotelomer alcohols, the model incorporates PFAS-specific properties such as molecular weight, hydrophobicity, and pKa, alongside soil characteristics like pH, texture, organic carbon content, and cation exchange capacity. Sensitivity analysis reveals that molecular weight, hydrophobicity, and organic carbon content are the most significant factors influencing sorption behavior, while charge density and mineral soil fraction have comparatively minor effects. The model demonstrates high predictive performance, with RPD values exceeding 3.16 across validation data sets, outperforming existing tools in accuracy and scope. Notably, PFAS chain length and functional group variability significantly influence Kd, with longer chain lengths and higher hydrophobicity positively correlating with Kd. By integrating location-specific soil repository data, the model enables the generation of spatial Kd maps for selected PFAS species. These capabilities are implemented in the online platform PFASorptionML, providing researchers and practitioners with a valuable resource for conducting environmental risk assessments of PFAS contamination in soils.

A comprehensive dataset of PFAS solid−liquid distribution coefficients (Kd) in soils was used to develop a machine learning model, offering Kd (PFAS) predictions that are useful for environmental management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信