TiO2粒径对钛铌氧化物合成及其在锂离子电池中电化学性能的影响

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhongmeng Xue, Tao Li, He Sun, Qiwei Tang, Yang Yu* and Kunlei Zhu*, 
{"title":"TiO2粒径对钛铌氧化物合成及其在锂离子电池中电化学性能的影响","authors":"Zhongmeng Xue,&nbsp;Tao Li,&nbsp;He Sun,&nbsp;Qiwei Tang,&nbsp;Yang Yu* and Kunlei Zhu*,&nbsp;","doi":"10.1021/acsomega.5c0144710.1021/acsomega.5c01447","DOIUrl":null,"url":null,"abstract":"<p >Developing high-performance anode materials is crucial for advancing lithium-ion batteries, particularly to meet the growing demands for higher capacity, improved safety, and enhanced rate performance in applications such as electric vehicles. In this study, we reveal the significant impact of the TiO<sub>2</sub> particle size on the synthesis and electrochemical performance of titanium–niobium oxides (TNOs). Using a high-temperature solid-phase method, we synthesized TNOs with varying compositions and sizes by reacting TiO<sub>2</sub> particles of different sizes (5–10, 10–25, 30, 60, and 100 nm) with Nb<sub>2</sub>O<sub>5</sub> particles. Comprehensive characterization through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electrochemical tests revealed that the TNO synthesized using 10–25 nm TiO<sub>2</sub> particles (designated as TNO4) exhibited superior electrochemical performance. TNO4 demonstrated the highest charge/discharge capacities at high current densities and exceptional cycling stability, which can be attributed to its optimal composition and particle size, both of which facilitate efficient lithium-ion diffusion and electron transport. This work not only highlights the critical role of precursor particle size in tailoring the properties of TNO anode materials but also identifies the optimal TiO<sub>2</sub> particle size for synthesizing high-performance TNOs via a simple and scalable method. Additionally, this work underscores that both the composition and the particle size of TNOs significantly affect their electrochemical performance. Our findings provide valuable insights and serve as a practical reference for the design and preparation of advanced anode materials for lithium-ion batteries.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"15744–15752 15744–15752"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01447","citationCount":"0","resultStr":"{\"title\":\"Influence of TiO2 Particle Size on the Synthesis of Titanium–Niobium Oxides and Their Electrochemical Performance in Lithium–Ion Cells\",\"authors\":\"Zhongmeng Xue,&nbsp;Tao Li,&nbsp;He Sun,&nbsp;Qiwei Tang,&nbsp;Yang Yu* and Kunlei Zhu*,&nbsp;\",\"doi\":\"10.1021/acsomega.5c0144710.1021/acsomega.5c01447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing high-performance anode materials is crucial for advancing lithium-ion batteries, particularly to meet the growing demands for higher capacity, improved safety, and enhanced rate performance in applications such as electric vehicles. In this study, we reveal the significant impact of the TiO<sub>2</sub> particle size on the synthesis and electrochemical performance of titanium–niobium oxides (TNOs). Using a high-temperature solid-phase method, we synthesized TNOs with varying compositions and sizes by reacting TiO<sub>2</sub> particles of different sizes (5–10, 10–25, 30, 60, and 100 nm) with Nb<sub>2</sub>O<sub>5</sub> particles. Comprehensive characterization through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electrochemical tests revealed that the TNO synthesized using 10–25 nm TiO<sub>2</sub> particles (designated as TNO4) exhibited superior electrochemical performance. TNO4 demonstrated the highest charge/discharge capacities at high current densities and exceptional cycling stability, which can be attributed to its optimal composition and particle size, both of which facilitate efficient lithium-ion diffusion and electron transport. This work not only highlights the critical role of precursor particle size in tailoring the properties of TNO anode materials but also identifies the optimal TiO<sub>2</sub> particle size for synthesizing high-performance TNOs via a simple and scalable method. Additionally, this work underscores that both the composition and the particle size of TNOs significantly affect their electrochemical performance. Our findings provide valuable insights and serve as a practical reference for the design and preparation of advanced anode materials for lithium-ion batteries.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 15\",\"pages\":\"15744–15752 15744–15752\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01447\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c01447\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c01447","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高性能负极材料对于推进锂离子电池的发展至关重要,特别是在满足电动汽车等应用对更高容量、更高安全性和更高倍率性能日益增长的需求方面。在本研究中,我们揭示了TiO2粒径对钛-铌氧化物(TNOs)的合成和电化学性能的显著影响。采用高温固相法,通过不同粒径(5-10、10-25、30、60和100 nm)的TiO2颗粒与Nb2O5颗粒反应,合成了不同组成和尺寸的TNOs。通过x射线衍射、扫描电镜、透射电镜和电化学测试等综合表征表明,采用10-25 nm TiO2颗粒(称为TNO4)合成的TNO具有优异的电化学性能。TNO4在高电流密度下表现出最高的充放电能力和卓越的循环稳定性,这可归因于其最佳的成分和粒径,这两者都有助于高效的锂离子扩散和电子传递。这项工作不仅突出了前驱体粒径在定制TNO阳极材料性能中的关键作用,而且通过一种简单且可扩展的方法确定了合成高性能TNO的最佳TiO2粒径。此外,本工作强调了TNOs的组成和粒径对其电化学性能有显著影响。我们的研究结果为设计和制备先进的锂离子电池负极材料提供了有价值的见解和实用参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of TiO2 Particle Size on the Synthesis of Titanium–Niobium Oxides and Their Electrochemical Performance in Lithium–Ion Cells

Developing high-performance anode materials is crucial for advancing lithium-ion batteries, particularly to meet the growing demands for higher capacity, improved safety, and enhanced rate performance in applications such as electric vehicles. In this study, we reveal the significant impact of the TiO2 particle size on the synthesis and electrochemical performance of titanium–niobium oxides (TNOs). Using a high-temperature solid-phase method, we synthesized TNOs with varying compositions and sizes by reacting TiO2 particles of different sizes (5–10, 10–25, 30, 60, and 100 nm) with Nb2O5 particles. Comprehensive characterization through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electrochemical tests revealed that the TNO synthesized using 10–25 nm TiO2 particles (designated as TNO4) exhibited superior electrochemical performance. TNO4 demonstrated the highest charge/discharge capacities at high current densities and exceptional cycling stability, which can be attributed to its optimal composition and particle size, both of which facilitate efficient lithium-ion diffusion and electron transport. This work not only highlights the critical role of precursor particle size in tailoring the properties of TNO anode materials but also identifies the optimal TiO2 particle size for synthesizing high-performance TNOs via a simple and scalable method. Additionally, this work underscores that both the composition and the particle size of TNOs significantly affect their electrochemical performance. Our findings provide valuable insights and serve as a practical reference for the design and preparation of advanced anode materials for lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信