Guilherme Justiniano Mizumoto, Nelson Henrique Morgon, Aguinaldo Robinson de Souza and Valdecir Farias Ximenes*,
{"title":"石墨烯量子点的亲电敏感性:次氯酸与次溴酸─实验与理论研究","authors":"Guilherme Justiniano Mizumoto, Nelson Henrique Morgon, Aguinaldo Robinson de Souza and Valdecir Farias Ximenes*, ","doi":"10.1021/acsomega.5c0150010.1021/acsomega.5c01500","DOIUrl":null,"url":null,"abstract":"<p >Graphene quantum dots (GQDs) are water-soluble, are biocompatible, and exhibit low toxicity. These properties, along with their adjustable and efficient fluorescent emission, make GQDs valuable for biological applications, particularly as spectroscopic nanosensors. In this context, GQDs have been utilized to detect hypochlorous acid (HOCl). While HOCl is a well-known synthetic disinfectant, it is also naturally produced by the enzyme myeloperoxidase (MPO) in mammals. This heme-peroxidase also catalyzes the production of hypobromous acid (HOBr), a more potent halogenating agent. In our study, we compared the reactivity of HOCl and HOBr with GQDs. By monitoring the fluorescence bleaching of the GQDs, we demonstrated that HOBr is more reactive than HOCl. The increased reactivity was attributed to HOBr’s higher electrophilicity. The electrophilic nature of the reaction was further confirmed by introducing nicotine as a chlorination catalyst. Anisole did not inhibit the electrophilic attack, confirming the high reactivity of GODs with HOBr. The enzyme MPO was used to generate HOBr through oxidation of Br<sup>–</sup> by H<sub>2</sub>O<sub>2</sub>. Thus, the enzymatic activity of MPO could be monitored by GQDs’ fluorescence bleaching, and the efficiency of MPO inhibitors could be evaluated. We applied differential function theory (DFT) methodologies to support our experimental findings, proposing a transition state for the electrophilic attack. Consistent with our experimental results, the energetic barrier for the reaction with HOBr was lower than that for HOCl. Overall, our results indicate the susceptibility of GQDs to electrophilic attacks by hypohalous acids and highlight new opportunities for biological applications.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"15753–15761 15753–15761"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01500","citationCount":"0","resultStr":"{\"title\":\"Electrophilic Susceptibility of Graphene Quantum Dots: Hypochlorous versus Hypobromous Acids─Experimental and Theoretical Study\",\"authors\":\"Guilherme Justiniano Mizumoto, Nelson Henrique Morgon, Aguinaldo Robinson de Souza and Valdecir Farias Ximenes*, \",\"doi\":\"10.1021/acsomega.5c0150010.1021/acsomega.5c01500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Graphene quantum dots (GQDs) are water-soluble, are biocompatible, and exhibit low toxicity. These properties, along with their adjustable and efficient fluorescent emission, make GQDs valuable for biological applications, particularly as spectroscopic nanosensors. In this context, GQDs have been utilized to detect hypochlorous acid (HOCl). While HOCl is a well-known synthetic disinfectant, it is also naturally produced by the enzyme myeloperoxidase (MPO) in mammals. This heme-peroxidase also catalyzes the production of hypobromous acid (HOBr), a more potent halogenating agent. In our study, we compared the reactivity of HOCl and HOBr with GQDs. By monitoring the fluorescence bleaching of the GQDs, we demonstrated that HOBr is more reactive than HOCl. The increased reactivity was attributed to HOBr’s higher electrophilicity. The electrophilic nature of the reaction was further confirmed by introducing nicotine as a chlorination catalyst. Anisole did not inhibit the electrophilic attack, confirming the high reactivity of GODs with HOBr. The enzyme MPO was used to generate HOBr through oxidation of Br<sup>–</sup> by H<sub>2</sub>O<sub>2</sub>. Thus, the enzymatic activity of MPO could be monitored by GQDs’ fluorescence bleaching, and the efficiency of MPO inhibitors could be evaluated. We applied differential function theory (DFT) methodologies to support our experimental findings, proposing a transition state for the electrophilic attack. Consistent with our experimental results, the energetic barrier for the reaction with HOBr was lower than that for HOCl. Overall, our results indicate the susceptibility of GQDs to electrophilic attacks by hypohalous acids and highlight new opportunities for biological applications.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 15\",\"pages\":\"15753–15761 15753–15761\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01500\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c01500\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c01500","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrophilic Susceptibility of Graphene Quantum Dots: Hypochlorous versus Hypobromous Acids─Experimental and Theoretical Study
Graphene quantum dots (GQDs) are water-soluble, are biocompatible, and exhibit low toxicity. These properties, along with their adjustable and efficient fluorescent emission, make GQDs valuable for biological applications, particularly as spectroscopic nanosensors. In this context, GQDs have been utilized to detect hypochlorous acid (HOCl). While HOCl is a well-known synthetic disinfectant, it is also naturally produced by the enzyme myeloperoxidase (MPO) in mammals. This heme-peroxidase also catalyzes the production of hypobromous acid (HOBr), a more potent halogenating agent. In our study, we compared the reactivity of HOCl and HOBr with GQDs. By monitoring the fluorescence bleaching of the GQDs, we demonstrated that HOBr is more reactive than HOCl. The increased reactivity was attributed to HOBr’s higher electrophilicity. The electrophilic nature of the reaction was further confirmed by introducing nicotine as a chlorination catalyst. Anisole did not inhibit the electrophilic attack, confirming the high reactivity of GODs with HOBr. The enzyme MPO was used to generate HOBr through oxidation of Br– by H2O2. Thus, the enzymatic activity of MPO could be monitored by GQDs’ fluorescence bleaching, and the efficiency of MPO inhibitors could be evaluated. We applied differential function theory (DFT) methodologies to support our experimental findings, proposing a transition state for the electrophilic attack. Consistent with our experimental results, the energetic barrier for the reaction with HOBr was lower than that for HOCl. Overall, our results indicate the susceptibility of GQDs to electrophilic attacks by hypohalous acids and highlight new opportunities for biological applications.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.