Emily Milan, James A. Quirk, Kenjiro Hashi, John Cattermull, Andrew L. Goodwin, James A. Dawson and Mauro Pasta*,
{"title":"填补LiBr-LiOH相图空白:高温Li3(OH)2Br相的研究","authors":"Emily Milan, James A. Quirk, Kenjiro Hashi, John Cattermull, Andrew L. Goodwin, James A. Dawson and Mauro Pasta*, ","doi":"10.1021/acs.chemmater.5c0020610.1021/acs.chemmater.5c00206","DOIUrl":null,"url":null,"abstract":"<p >In this paper, we build on previous work to characterize a phase with stoichiometry Li<sub>3</sub>(OH)<sub>2</sub>Br existing between ∼225 and ∼275 °C in the LiBr-LiOH phase diagram. Diffraction studies indicate that the phase takes a hexagonal unit cell, and theoretical modeling is used to suggest a possible crystal structure. Nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy measurements demonstrate excellent lithium-ion dynamics in this phase, with an ionic conductivity of 0.12 S cm<sup>–1</sup> at 250 °C. Initial attempts to stabilize this phase at room temperature through quenching were not successful. Instead, a metastable state demonstrating poor ionic conductivity is found to form. This is an important consideration for the synthesis of Li<sub>2</sub>OHBr solid-state electrolytes (also found in the LiBr-LiOH phase diagram) which are synthesized by cooling through phase fields containing Li<sub>3</sub>(OH)<sub>2</sub>Br, and are hence susceptible to these impurities.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 8","pages":"2899–2906 2899–2906"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.5c00206","citationCount":"0","resultStr":"{\"title\":\"Filling the Gaps in the LiBr-LiOH Phase Diagram: A Study on the High-Temperature Li3(OH)2Br Phase\",\"authors\":\"Emily Milan, James A. Quirk, Kenjiro Hashi, John Cattermull, Andrew L. Goodwin, James A. Dawson and Mauro Pasta*, \",\"doi\":\"10.1021/acs.chemmater.5c0020610.1021/acs.chemmater.5c00206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this paper, we build on previous work to characterize a phase with stoichiometry Li<sub>3</sub>(OH)<sub>2</sub>Br existing between ∼225 and ∼275 °C in the LiBr-LiOH phase diagram. Diffraction studies indicate that the phase takes a hexagonal unit cell, and theoretical modeling is used to suggest a possible crystal structure. Nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy measurements demonstrate excellent lithium-ion dynamics in this phase, with an ionic conductivity of 0.12 S cm<sup>–1</sup> at 250 °C. Initial attempts to stabilize this phase at room temperature through quenching were not successful. Instead, a metastable state demonstrating poor ionic conductivity is found to form. This is an important consideration for the synthesis of Li<sub>2</sub>OHBr solid-state electrolytes (also found in the LiBr-LiOH phase diagram) which are synthesized by cooling through phase fields containing Li<sub>3</sub>(OH)<sub>2</sub>Br, and are hence susceptible to these impurities.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 8\",\"pages\":\"2899–2906 2899–2906\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.5c00206\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00206\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00206","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Filling the Gaps in the LiBr-LiOH Phase Diagram: A Study on the High-Temperature Li3(OH)2Br Phase
In this paper, we build on previous work to characterize a phase with stoichiometry Li3(OH)2Br existing between ∼225 and ∼275 °C in the LiBr-LiOH phase diagram. Diffraction studies indicate that the phase takes a hexagonal unit cell, and theoretical modeling is used to suggest a possible crystal structure. Nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy measurements demonstrate excellent lithium-ion dynamics in this phase, with an ionic conductivity of 0.12 S cm–1 at 250 °C. Initial attempts to stabilize this phase at room temperature through quenching were not successful. Instead, a metastable state demonstrating poor ionic conductivity is found to form. This is an important consideration for the synthesis of Li2OHBr solid-state electrolytes (also found in the LiBr-LiOH phase diagram) which are synthesized by cooling through phase fields containing Li3(OH)2Br, and are hence susceptible to these impurities.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.