预测铁硫簇氧化还原电位:从蛋白质结构推导的简单模型

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jiyeon Min, Fidaa Ali, Bernard R. Brooks, Barry D. Bruce and Muhamed Amin*, 
{"title":"预测铁硫簇氧化还原电位:从蛋白质结构推导的简单模型","authors":"Jiyeon Min,&nbsp;Fidaa Ali,&nbsp;Bernard R. Brooks,&nbsp;Barry D. Bruce and Muhamed Amin*,&nbsp;","doi":"10.1021/acsomega.5c0197610.1021/acsomega.5c01976","DOIUrl":null,"url":null,"abstract":"<p >Iron–sulfur (Fe–S) clusters are critical cofactors in metalloproteins, essential for cellular processes such as energy production, DNA repair, enzymatic catalysis, and metabolic regulation. While Fe–S cluster functions are intimately linked to their redox properties, their precise roles in many proteins remain unclear. In this study, we present a regression model based on experimental redox potential (<i>E</i><sub><i>m</i></sub>) data, utilizing only two features: the Fe–S cluster’s total charge and the Fe atoms’ average valence. This model achieves a high correlation with experimental data (<i>R</i><sup>2</sup> = 0.82) and an average prediction error of 0.12 V. Applying this model across the Protein Data Bank, we predict <i>E</i><sub><i>m</i></sub> values for all cataloged Fe–S clusters, uncovering redox potential trends across diverse cluster classes. The computed redox potentials showed strong agreement with experimental values, achieving an overall accuracy of 88%. This streamlined, computationally accessible approach enhances the annotation and mechanistic understanding of Fe–S proteins, offering new insights into the redox variability of electron transport proteins. Our model holds promise for advancing studies of metalloprotein function and facilitating the design of bioinspired redox systems.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 15","pages":"15790–15798 15790–15798"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01976","citationCount":"0","resultStr":"{\"title\":\"Predicting Iron–Sulfur Cluster Redox Potentials: A Simple Model Derived from Protein Structures\",\"authors\":\"Jiyeon Min,&nbsp;Fidaa Ali,&nbsp;Bernard R. Brooks,&nbsp;Barry D. Bruce and Muhamed Amin*,&nbsp;\",\"doi\":\"10.1021/acsomega.5c0197610.1021/acsomega.5c01976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Iron–sulfur (Fe–S) clusters are critical cofactors in metalloproteins, essential for cellular processes such as energy production, DNA repair, enzymatic catalysis, and metabolic regulation. While Fe–S cluster functions are intimately linked to their redox properties, their precise roles in many proteins remain unclear. In this study, we present a regression model based on experimental redox potential (<i>E</i><sub><i>m</i></sub>) data, utilizing only two features: the Fe–S cluster’s total charge and the Fe atoms’ average valence. This model achieves a high correlation with experimental data (<i>R</i><sup>2</sup> = 0.82) and an average prediction error of 0.12 V. Applying this model across the Protein Data Bank, we predict <i>E</i><sub><i>m</i></sub> values for all cataloged Fe–S clusters, uncovering redox potential trends across diverse cluster classes. The computed redox potentials showed strong agreement with experimental values, achieving an overall accuracy of 88%. This streamlined, computationally accessible approach enhances the annotation and mechanistic understanding of Fe–S proteins, offering new insights into the redox variability of electron transport proteins. Our model holds promise for advancing studies of metalloprotein function and facilitating the design of bioinspired redox systems.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 15\",\"pages\":\"15790–15798 15790–15798\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01976\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c01976\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c01976","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁硫(Fe-S)簇是金属蛋白中的关键辅助因子,对能量产生、DNA 修复、酶催化和代谢调节等细胞过程至关重要。虽然 Fe-S 簇的功能与其氧化还原特性密切相关,但它们在许多蛋白质中的确切作用仍不清楚。在本研究中,我们基于实验氧化还原电位(Em)数据,仅利用了两个特征:Fe-S 团簇的总电荷和铁原子的平均价。该模型与实验数据高度相关(R2 = 0.82),平均预测误差为 0.12 V。将该模型应用于整个蛋白质数据库,我们预测了所有编目 Fe-S 簇的 Em 值,发现了不同簇类的氧化还原电位趋势。计算出的氧化还原电位与实验值非常吻合,总体准确率达到 88%。这种简化、易于计算的方法增强了对 Fe-S 蛋白的注释和机理理解,为了解电子传递蛋白的氧化还原变异性提供了新的视角。我们的模型有望推动金属蛋白功能的研究,促进生物氧化还原系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Iron–Sulfur Cluster Redox Potentials: A Simple Model Derived from Protein Structures

Iron–sulfur (Fe–S) clusters are critical cofactors in metalloproteins, essential for cellular processes such as energy production, DNA repair, enzymatic catalysis, and metabolic regulation. While Fe–S cluster functions are intimately linked to their redox properties, their precise roles in many proteins remain unclear. In this study, we present a regression model based on experimental redox potential (Em) data, utilizing only two features: the Fe–S cluster’s total charge and the Fe atoms’ average valence. This model achieves a high correlation with experimental data (R2 = 0.82) and an average prediction error of 0.12 V. Applying this model across the Protein Data Bank, we predict Em values for all cataloged Fe–S clusters, uncovering redox potential trends across diverse cluster classes. The computed redox potentials showed strong agreement with experimental values, achieving an overall accuracy of 88%. This streamlined, computationally accessible approach enhances the annotation and mechanistic understanding of Fe–S proteins, offering new insights into the redox variability of electron transport proteins. Our model holds promise for advancing studies of metalloprotein function and facilitating the design of bioinspired redox systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信