{"title":"用于高精度神经形态计算的二维铁电半导体晶体管中的可调突触可塑性","authors":"Tingting Ma*, and , Yichen Wei*, ","doi":"10.1021/acsaelm.5c0002010.1021/acsaelm.5c00020","DOIUrl":null,"url":null,"abstract":"<p >With the rise of big data and artificial intelligence, the von Neumann architecture’s limitations in computing power and energy efficiency are becoming increasingly evident. Neuromorphic computing, an innovative approach inspired by simulating the workings of the human brain, aims to achieve high computational capabilities with low energy consumption. Two-dimensional (2D) van der Waals ferroelectric semiconductor α-In<sub>2</sub>Se<sub>3</sub> exhibits a unique combination of ferroelectricity, semiconductor properties, and the advantages of 2D materials, demonstrating significant potential as an ideal platform for information processing. This work reports a 2D ferroelectric semiconductor synaptic transistor based on α-In<sub>2</sub>Se<sub>3</sub>, which exhibits nonvolatile characteristics and synaptic plasticity due to the ferroelectric remanent polarization of α-In<sub>2</sub>Se<sub>3</sub>. The tight coupling between ferroelectric polarization and semiconducting nature allowed the <span>α</span>-In<sub>2</sub>Se<sub>3</sub> ferroelectric semiconductor field-effect transistor to achieve a high current on/off ratio of 10<sup>5</sup>, a wide memory window of 81 V, and retention time greater than 600 s. Furthermore, the device demonstrated tunable synaptic plasticity, exhibiting paired-pulse facilitation, long-term potentiation/depression, the transition from short-term to long-term plasticity, as well as learning-experience behavior. Electrically modulated synaptic plasticity enabled an artificial neural network to achieve a peak accuracy of 94.8% on the MNIST handwritten digit data set, maintaining over 80% accuracy under background noise (standard deviation up to 50%), highlighting the robust fault tolerance of the conductance states. These results demonstrate that the 2D ferroelectric semiconductor α-In<sub>2</sub>Se<sub>3</sub> holds significant potential for applications in high-performance information storage, processing, and neuromorphic computing.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 8","pages":"3314–3323 3314–3323"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Synaptic Plasticity in 2D Ferroelectric Semiconductor Transistor for High-Precision Neuromorphic Computing\",\"authors\":\"Tingting Ma*, and , Yichen Wei*, \",\"doi\":\"10.1021/acsaelm.5c0002010.1021/acsaelm.5c00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the rise of big data and artificial intelligence, the von Neumann architecture’s limitations in computing power and energy efficiency are becoming increasingly evident. Neuromorphic computing, an innovative approach inspired by simulating the workings of the human brain, aims to achieve high computational capabilities with low energy consumption. Two-dimensional (2D) van der Waals ferroelectric semiconductor α-In<sub>2</sub>Se<sub>3</sub> exhibits a unique combination of ferroelectricity, semiconductor properties, and the advantages of 2D materials, demonstrating significant potential as an ideal platform for information processing. This work reports a 2D ferroelectric semiconductor synaptic transistor based on α-In<sub>2</sub>Se<sub>3</sub>, which exhibits nonvolatile characteristics and synaptic plasticity due to the ferroelectric remanent polarization of α-In<sub>2</sub>Se<sub>3</sub>. The tight coupling between ferroelectric polarization and semiconducting nature allowed the <span>α</span>-In<sub>2</sub>Se<sub>3</sub> ferroelectric semiconductor field-effect transistor to achieve a high current on/off ratio of 10<sup>5</sup>, a wide memory window of 81 V, and retention time greater than 600 s. Furthermore, the device demonstrated tunable synaptic plasticity, exhibiting paired-pulse facilitation, long-term potentiation/depression, the transition from short-term to long-term plasticity, as well as learning-experience behavior. Electrically modulated synaptic plasticity enabled an artificial neural network to achieve a peak accuracy of 94.8% on the MNIST handwritten digit data set, maintaining over 80% accuracy under background noise (standard deviation up to 50%), highlighting the robust fault tolerance of the conductance states. These results demonstrate that the 2D ferroelectric semiconductor α-In<sub>2</sub>Se<sub>3</sub> holds significant potential for applications in high-performance information storage, processing, and neuromorphic computing.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 8\",\"pages\":\"3314–3323 3314–3323\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00020\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Tunable Synaptic Plasticity in 2D Ferroelectric Semiconductor Transistor for High-Precision Neuromorphic Computing
With the rise of big data and artificial intelligence, the von Neumann architecture’s limitations in computing power and energy efficiency are becoming increasingly evident. Neuromorphic computing, an innovative approach inspired by simulating the workings of the human brain, aims to achieve high computational capabilities with low energy consumption. Two-dimensional (2D) van der Waals ferroelectric semiconductor α-In2Se3 exhibits a unique combination of ferroelectricity, semiconductor properties, and the advantages of 2D materials, demonstrating significant potential as an ideal platform for information processing. This work reports a 2D ferroelectric semiconductor synaptic transistor based on α-In2Se3, which exhibits nonvolatile characteristics and synaptic plasticity due to the ferroelectric remanent polarization of α-In2Se3. The tight coupling between ferroelectric polarization and semiconducting nature allowed the α-In2Se3 ferroelectric semiconductor field-effect transistor to achieve a high current on/off ratio of 105, a wide memory window of 81 V, and retention time greater than 600 s. Furthermore, the device demonstrated tunable synaptic plasticity, exhibiting paired-pulse facilitation, long-term potentiation/depression, the transition from short-term to long-term plasticity, as well as learning-experience behavior. Electrically modulated synaptic plasticity enabled an artificial neural network to achieve a peak accuracy of 94.8% on the MNIST handwritten digit data set, maintaining over 80% accuracy under background noise (standard deviation up to 50%), highlighting the robust fault tolerance of the conductance states. These results demonstrate that the 2D ferroelectric semiconductor α-In2Se3 holds significant potential for applications in high-performance information storage, processing, and neuromorphic computing.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico