Fabien Cholet, Marta Vignola, Dominic Quinn, Umer Z. Ijaz, William T. Sloan, Cindy J. Smith
{"title":"基于16S rRNA测序的饮用水生物过滤微生物生态学:meta分析","authors":"Fabien Cholet, Marta Vignola, Dominic Quinn, Umer Z. Ijaz, William T. Sloan, Cindy J. Smith","doi":"10.1016/j.watres.2025.123684","DOIUrl":null,"url":null,"abstract":"<div><div>Biofiltration, a sustainable water treatment technology relying on microbial processes to remove contaminants, offers a promising approach to achieving the United Nations Sustainable Goal 6 of universal access to clean water and sanitation by 2030. However, a key barrier to optimising biofiltration is the incomplete understanding of the biological mechanisms governing its performance. Despite numerous studies examining how engineering decisions impact biofilter performance and the associated microbiome, the significant influence of geographical location on microbial communities raises the question of whether these findings are universally applicable or location-specific. To address this, we conducted a meta-analysis of 15 biofilter microbiomes using <em>16S rRNA</em> high-throughput sequencing (HTS) data, mainly originating from rapid gravity and/or granular activated carbon (GAC) filters. Despite different types and scales, results highlight geographical location as the major contributor to microbiome dissimilarity in biofilter samples (Top and Bottom) (R<sup>2</sup>∼ 0.5; <em>p-</em>value<0.001). The same was observed for influent waters (PERMANOVA R<sup>2</sup>= 0.76; <em>p-</em>value<0.001), indicating location-specific microbiomes as opposed to differences driven by different biofilter operating parameters. Irrespective of location, the higher percentage of the microbiome was assembled through deterministic processes (∼55 %) compared to stochastic processes (∼45 %). Finally, our findings suggest that the depth stratification of biofilter microbiomes may be associated with the enrichment of taxa capable of metabolising more complex organic carbon in deeper filter layers (10 enriched pathways in biofilter Bottom layers compared to 3 at the Top). These insights provide a broader understanding of biofiltration microbiomes and offer possible research avenues for targeted and effective biofilter design strategies.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123684"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial ecology of drinking water biofiltration based on 16S rRNA sequencing: A meta-analysis\",\"authors\":\"Fabien Cholet, Marta Vignola, Dominic Quinn, Umer Z. Ijaz, William T. Sloan, Cindy J. Smith\",\"doi\":\"10.1016/j.watres.2025.123684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biofiltration, a sustainable water treatment technology relying on microbial processes to remove contaminants, offers a promising approach to achieving the United Nations Sustainable Goal 6 of universal access to clean water and sanitation by 2030. However, a key barrier to optimising biofiltration is the incomplete understanding of the biological mechanisms governing its performance. Despite numerous studies examining how engineering decisions impact biofilter performance and the associated microbiome, the significant influence of geographical location on microbial communities raises the question of whether these findings are universally applicable or location-specific. To address this, we conducted a meta-analysis of 15 biofilter microbiomes using <em>16S rRNA</em> high-throughput sequencing (HTS) data, mainly originating from rapid gravity and/or granular activated carbon (GAC) filters. Despite different types and scales, results highlight geographical location as the major contributor to microbiome dissimilarity in biofilter samples (Top and Bottom) (R<sup>2</sup>∼ 0.5; <em>p-</em>value<0.001). The same was observed for influent waters (PERMANOVA R<sup>2</sup>= 0.76; <em>p-</em>value<0.001), indicating location-specific microbiomes as opposed to differences driven by different biofilter operating parameters. Irrespective of location, the higher percentage of the microbiome was assembled through deterministic processes (∼55 %) compared to stochastic processes (∼45 %). Finally, our findings suggest that the depth stratification of biofilter microbiomes may be associated with the enrichment of taxa capable of metabolising more complex organic carbon in deeper filter layers (10 enriched pathways in biofilter Bottom layers compared to 3 at the Top). These insights provide a broader understanding of biofiltration microbiomes and offer possible research avenues for targeted and effective biofilter design strategies.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"281 \",\"pages\":\"Article 123684\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425005937\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005937","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Microbial ecology of drinking water biofiltration based on 16S rRNA sequencing: A meta-analysis
Biofiltration, a sustainable water treatment technology relying on microbial processes to remove contaminants, offers a promising approach to achieving the United Nations Sustainable Goal 6 of universal access to clean water and sanitation by 2030. However, a key barrier to optimising biofiltration is the incomplete understanding of the biological mechanisms governing its performance. Despite numerous studies examining how engineering decisions impact biofilter performance and the associated microbiome, the significant influence of geographical location on microbial communities raises the question of whether these findings are universally applicable or location-specific. To address this, we conducted a meta-analysis of 15 biofilter microbiomes using 16S rRNA high-throughput sequencing (HTS) data, mainly originating from rapid gravity and/or granular activated carbon (GAC) filters. Despite different types and scales, results highlight geographical location as the major contributor to microbiome dissimilarity in biofilter samples (Top and Bottom) (R2∼ 0.5; p-value<0.001). The same was observed for influent waters (PERMANOVA R2= 0.76; p-value<0.001), indicating location-specific microbiomes as opposed to differences driven by different biofilter operating parameters. Irrespective of location, the higher percentage of the microbiome was assembled through deterministic processes (∼55 %) compared to stochastic processes (∼45 %). Finally, our findings suggest that the depth stratification of biofilter microbiomes may be associated with the enrichment of taxa capable of metabolising more complex organic carbon in deeper filter layers (10 enriched pathways in biofilter Bottom layers compared to 3 at the Top). These insights provide a broader understanding of biofiltration microbiomes and offer possible research avenues for targeted and effective biofilter design strategies.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.