Drew E. Latta, Sebastian T. Mergelsberg, Duo Song, Eric J. Bylaska, Michelle M. Scherer, Bryanna Popejoy, Sarah A. Saslow, Jeffrey G. Catalano, Eugene S. Ilton
{"title":"杂质对针铁矿氧化还原性能的影响","authors":"Drew E. Latta, Sebastian T. Mergelsberg, Duo Song, Eric J. Bylaska, Michelle M. Scherer, Bryanna Popejoy, Sarah A. Saslow, Jeffrey G. Catalano, Eugene S. Ilton","doi":"10.1021/acs.est.4c13480","DOIUrl":null,"url":null,"abstract":"Iron oxide minerals regulate the flux of electrons in the environment and are important hosts for trace and minor, yet critical, elements. Here, we present the first evidence of a direct link between the local coordination environments of Ni and Zn and the redox properties of their host phase goethite (α-FeOOH), the most abundant Fe(III) (oxyhydr)oxide at Earth’s surface. We used aqueous redox measurements to show that the redox potential <i>E</i><sub>H</sub><sup>0</sup>, and hence the mineral’s stability, follows the order: pure goethite ≥ Zn-goethite > Ni-goethite. Parallel X-ray absorption and scattering measurements demonstrate, using quantum-informed analysis, that the local coordination environment of the smaller impurity, Ni, causes more bulk strain energy than Zn, which nearly accounts for the difference in <i>E</i><sub>H</sub><sup>0</sup> between Ni- and Zn-goethite. Our theory-informed, experimental study reveals how two common impurities affect the stability of goethite with implications for the biogeochemical reactivity of Fe(III) (oxyhydr)oxide in mediating elemental and electron fluxes in the environment.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"138 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Impurities on the Redox Properties of Goethite\",\"authors\":\"Drew E. Latta, Sebastian T. Mergelsberg, Duo Song, Eric J. Bylaska, Michelle M. Scherer, Bryanna Popejoy, Sarah A. Saslow, Jeffrey G. Catalano, Eugene S. Ilton\",\"doi\":\"10.1021/acs.est.4c13480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron oxide minerals regulate the flux of electrons in the environment and are important hosts for trace and minor, yet critical, elements. Here, we present the first evidence of a direct link between the local coordination environments of Ni and Zn and the redox properties of their host phase goethite (α-FeOOH), the most abundant Fe(III) (oxyhydr)oxide at Earth’s surface. We used aqueous redox measurements to show that the redox potential <i>E</i><sub>H</sub><sup>0</sup>, and hence the mineral’s stability, follows the order: pure goethite ≥ Zn-goethite > Ni-goethite. Parallel X-ray absorption and scattering measurements demonstrate, using quantum-informed analysis, that the local coordination environment of the smaller impurity, Ni, causes more bulk strain energy than Zn, which nearly accounts for the difference in <i>E</i><sub>H</sub><sup>0</sup> between Ni- and Zn-goethite. Our theory-informed, experimental study reveals how two common impurities affect the stability of goethite with implications for the biogeochemical reactivity of Fe(III) (oxyhydr)oxide in mediating elemental and electron fluxes in the environment.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c13480\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13480","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effect of Impurities on the Redox Properties of Goethite
Iron oxide minerals regulate the flux of electrons in the environment and are important hosts for trace and minor, yet critical, elements. Here, we present the first evidence of a direct link between the local coordination environments of Ni and Zn and the redox properties of their host phase goethite (α-FeOOH), the most abundant Fe(III) (oxyhydr)oxide at Earth’s surface. We used aqueous redox measurements to show that the redox potential EH0, and hence the mineral’s stability, follows the order: pure goethite ≥ Zn-goethite > Ni-goethite. Parallel X-ray absorption and scattering measurements demonstrate, using quantum-informed analysis, that the local coordination environment of the smaller impurity, Ni, causes more bulk strain energy than Zn, which nearly accounts for the difference in EH0 between Ni- and Zn-goethite. Our theory-informed, experimental study reveals how two common impurities affect the stability of goethite with implications for the biogeochemical reactivity of Fe(III) (oxyhydr)oxide in mediating elemental and electron fluxes in the environment.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.