{"title":"含pcp型钳形配体-茂金属钼配合物催化固氮生成亚胺的理论研究","authors":"Taiji Nakamura, Yusuke Tsuruta, Akihito Egi, Hiromasa Tanaka, Yoshiaki Nishibayashi, Kazunari Yoshizawa","doi":"10.1021/acs.inorgchem.5c00695","DOIUrl":null,"url":null,"abstract":"Homogeneous catalysts using a mononuclear molybdenum nitride (Mo≡N) complex bearing PCP-type pincer ligands allow nitrogen fixation under very mild conditions. The catalytic cycle involves three hydrogenation processes yielding an Mo-ammine complex [MoI(NH<sub>3</sub>)(PCP)] from the Mo-nitride complex [MoI(N)(PCP)]. We primarily focused on the first hydrogenation step, forming an Mo-imide complex [MoI(NH)(PCP)] since previous experimental and theoretical studies suggest that imide formation is the rate-limiting step in the catalytic cycle. The choice of protonating agent and reductant strongly influences the catalytic reactivity in imide formation. In this computational quantum chemical study, 2,4,6-collidinium (ColH<sup>+</sup>) was employed as the protonation agent, while metallocenes Cp<sub>2</sub>M<sup>II</sup> and decamethylmetallocenes Cp*<sub>2</sub>M<sup>II</sup> (M = V, Cr, Mn, Fe, Co, and Ni) were employed as reductants. The reaction of ColH<sup>+</sup> with the metallocenes yields protonated metallocenes, where a cyclopentadienyl ring of the metallocenes is protonated. Protonated Cp*<sub>2</sub>Cr<sup>II</sup> and Cp*<sub>2</sub>Co<sup>II</sup> are potential proton-coupled electron transfer (PCET) mediators to facilitate the imide formation of [MoI(N)(PCP)] with low activation free energies. The concerted reaction mechanism was compared with the stepwise reaction, where ColH<sup>+</sup> directly protonates [MoI(N)(PCP)], followed by reduction with the decamethylmetallocenes. Furthermore, we analyzed how proton transfer and electron transfer are concerted in the reaction of the PCET mediators with [MoI(N)(PCP)] by tracing electronic states along the reaction coordinates.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"34 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed by Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes\",\"authors\":\"Taiji Nakamura, Yusuke Tsuruta, Akihito Egi, Hiromasa Tanaka, Yoshiaki Nishibayashi, Kazunari Yoshizawa\",\"doi\":\"10.1021/acs.inorgchem.5c00695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homogeneous catalysts using a mononuclear molybdenum nitride (Mo≡N) complex bearing PCP-type pincer ligands allow nitrogen fixation under very mild conditions. The catalytic cycle involves three hydrogenation processes yielding an Mo-ammine complex [MoI(NH<sub>3</sub>)(PCP)] from the Mo-nitride complex [MoI(N)(PCP)]. We primarily focused on the first hydrogenation step, forming an Mo-imide complex [MoI(NH)(PCP)] since previous experimental and theoretical studies suggest that imide formation is the rate-limiting step in the catalytic cycle. The choice of protonating agent and reductant strongly influences the catalytic reactivity in imide formation. In this computational quantum chemical study, 2,4,6-collidinium (ColH<sup>+</sup>) was employed as the protonation agent, while metallocenes Cp<sub>2</sub>M<sup>II</sup> and decamethylmetallocenes Cp*<sub>2</sub>M<sup>II</sup> (M = V, Cr, Mn, Fe, Co, and Ni) were employed as reductants. The reaction of ColH<sup>+</sup> with the metallocenes yields protonated metallocenes, where a cyclopentadienyl ring of the metallocenes is protonated. Protonated Cp*<sub>2</sub>Cr<sup>II</sup> and Cp*<sub>2</sub>Co<sup>II</sup> are potential proton-coupled electron transfer (PCET) mediators to facilitate the imide formation of [MoI(N)(PCP)] with low activation free energies. The concerted reaction mechanism was compared with the stepwise reaction, where ColH<sup>+</sup> directly protonates [MoI(N)(PCP)], followed by reduction with the decamethylmetallocenes. Furthermore, we analyzed how proton transfer and electron transfer are concerted in the reaction of the PCET mediators with [MoI(N)(PCP)] by tracing electronic states along the reaction coordinates.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c00695\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c00695","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed by Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes
Homogeneous catalysts using a mononuclear molybdenum nitride (Mo≡N) complex bearing PCP-type pincer ligands allow nitrogen fixation under very mild conditions. The catalytic cycle involves three hydrogenation processes yielding an Mo-ammine complex [MoI(NH3)(PCP)] from the Mo-nitride complex [MoI(N)(PCP)]. We primarily focused on the first hydrogenation step, forming an Mo-imide complex [MoI(NH)(PCP)] since previous experimental and theoretical studies suggest that imide formation is the rate-limiting step in the catalytic cycle. The choice of protonating agent and reductant strongly influences the catalytic reactivity in imide formation. In this computational quantum chemical study, 2,4,6-collidinium (ColH+) was employed as the protonation agent, while metallocenes Cp2MII and decamethylmetallocenes Cp*2MII (M = V, Cr, Mn, Fe, Co, and Ni) were employed as reductants. The reaction of ColH+ with the metallocenes yields protonated metallocenes, where a cyclopentadienyl ring of the metallocenes is protonated. Protonated Cp*2CrII and Cp*2CoII are potential proton-coupled electron transfer (PCET) mediators to facilitate the imide formation of [MoI(N)(PCP)] with low activation free energies. The concerted reaction mechanism was compared with the stepwise reaction, where ColH+ directly protonates [MoI(N)(PCP)], followed by reduction with the decamethylmetallocenes. Furthermore, we analyzed how proton transfer and electron transfer are concerted in the reaction of the PCET mediators with [MoI(N)(PCP)] by tracing electronic states along the reaction coordinates.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.