Jingda Guo, Hongyan Ji, Meng Liu, Hui Zhou, Ting Lai, Shixuan Du, Sheng Meng, Jia-Tao Sun
{"title":"近平带呼吸Kagome半导体的谷选择光吸收和巨激子结合能","authors":"Jingda Guo, Hongyan Ji, Meng Liu, Hui Zhou, Ting Lai, Shixuan Du, Sheng Meng, Jia-Tao Sun","doi":"10.1021/acsnano.4c14020","DOIUrl":null,"url":null,"abstract":"Endowed with topological flat band and dispersive Dirac cones, layered Kagome materials, which are expected to exhibit distinctive electronic and optical properties, have garnered significant attention in the forefrontier research of condensed matter physics. Using density functional theory and many-body perturbation theory, here we study the optical and excitonic properties of tunable two-dimensional (2D) breathing Kagome material Ta<sub>3</sub>SBr<sub>7</sub> with topologically nontrivial flat band. Originated from the bulk counterpart, two thermodynamically stable structures are proposed, suggesting a new geometric degree of freedom for controlling the electronic and optical properties of the breathing Kagome lattice. Both Ta<sub>3</sub>SBr<sub>7</sub> monolayers exhibit momentum selective optical absorption, whose mechanism is unveiled from the detailed analysis of the dispersion, symmetry, and valley-contrasting Berry physics of electronic band structure. Because of the existence of characteristic nearly flat bands, the ground-state excitons of both Kagome structures possess exceptionally large binding energies up to 1.1 eV. Moreover, this geometric degree of freedom also results in significant differences in the optical activity and exciton radiative lifetimes for ground-state excitons in these two structures. Our results showcase the potential of Kagome semiconductors not only in the manipulation of excitonic behaviors but also in fundamental physics, such as fractional Chern insulators at zero applied magnetic field.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"7 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valley-Selective Optical Absorption and Giant Exciton Binding Energy of Breathing Kagome Semiconductor with Nearly Flat Band\",\"authors\":\"Jingda Guo, Hongyan Ji, Meng Liu, Hui Zhou, Ting Lai, Shixuan Du, Sheng Meng, Jia-Tao Sun\",\"doi\":\"10.1021/acsnano.4c14020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endowed with topological flat band and dispersive Dirac cones, layered Kagome materials, which are expected to exhibit distinctive electronic and optical properties, have garnered significant attention in the forefrontier research of condensed matter physics. Using density functional theory and many-body perturbation theory, here we study the optical and excitonic properties of tunable two-dimensional (2D) breathing Kagome material Ta<sub>3</sub>SBr<sub>7</sub> with topologically nontrivial flat band. Originated from the bulk counterpart, two thermodynamically stable structures are proposed, suggesting a new geometric degree of freedom for controlling the electronic and optical properties of the breathing Kagome lattice. Both Ta<sub>3</sub>SBr<sub>7</sub> monolayers exhibit momentum selective optical absorption, whose mechanism is unveiled from the detailed analysis of the dispersion, symmetry, and valley-contrasting Berry physics of electronic band structure. Because of the existence of characteristic nearly flat bands, the ground-state excitons of both Kagome structures possess exceptionally large binding energies up to 1.1 eV. Moreover, this geometric degree of freedom also results in significant differences in the optical activity and exciton radiative lifetimes for ground-state excitons in these two structures. Our results showcase the potential of Kagome semiconductors not only in the manipulation of excitonic behaviors but also in fundamental physics, such as fractional Chern insulators at zero applied magnetic field.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c14020\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14020","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Valley-Selective Optical Absorption and Giant Exciton Binding Energy of Breathing Kagome Semiconductor with Nearly Flat Band
Endowed with topological flat band and dispersive Dirac cones, layered Kagome materials, which are expected to exhibit distinctive electronic and optical properties, have garnered significant attention in the forefrontier research of condensed matter physics. Using density functional theory and many-body perturbation theory, here we study the optical and excitonic properties of tunable two-dimensional (2D) breathing Kagome material Ta3SBr7 with topologically nontrivial flat band. Originated from the bulk counterpart, two thermodynamically stable structures are proposed, suggesting a new geometric degree of freedom for controlling the electronic and optical properties of the breathing Kagome lattice. Both Ta3SBr7 monolayers exhibit momentum selective optical absorption, whose mechanism is unveiled from the detailed analysis of the dispersion, symmetry, and valley-contrasting Berry physics of electronic band structure. Because of the existence of characteristic nearly flat bands, the ground-state excitons of both Kagome structures possess exceptionally large binding energies up to 1.1 eV. Moreover, this geometric degree of freedom also results in significant differences in the optical activity and exciton radiative lifetimes for ground-state excitons in these two structures. Our results showcase the potential of Kagome semiconductors not only in the manipulation of excitonic behaviors but also in fundamental physics, such as fractional Chern insulators at zero applied magnetic field.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.