多价偶极相互作用驱动的超分子聚合物层在恶劣条件下实现了高度稳定的锌阳极

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhuanyi Liu, Suli Chen, Zhenhai Shi, Ping Qiu, Kun He, Qiongqiong Lu, Minghao Yu, Tianxi Liu
{"title":"多价偶极相互作用驱动的超分子聚合物层在恶劣条件下实现了高度稳定的锌阳极","authors":"Zhuanyi Liu, Suli Chen, Zhenhai Shi, Ping Qiu, Kun He, Qiongqiong Lu, Minghao Yu, Tianxi Liu","doi":"10.1002/aenm.202502010","DOIUrl":null,"url":null,"abstract":"Aggressive side reactions and dendrite growth, associated with the unstable Zn anode/electrolyte interface, have impeded the practical application of Zn metal-based batteries. Here, a donor-acceptor (D-A) polymer is employed to reconstruct a robust supramolecular polymer (SP) protective layer to achieve highly stable Zn anodes. The D-A polymer possessing abundant electron donor and acceptor sites can dynamically co-crosslink with water molecules and Zn<sup>2</sup>⁺ through multivalent dipole interactions (MDIs), resulting in the formation of a supramolecular polymer network. The MDIs disrupt the original strong hydrogen-bonding network within the D-A polymer, leading to the reconfiguration of polymer chain conformations and an increase in the intermolecular free volume exposing more widely distributed dipoles, thereby regulating the Zn<sup>2+</sup> desolvation behavior and facilitating rapid and uniform Zn<sup>2+</sup> plating. Meanwhile, the resultant supramolecular network endows the SP with an ultra-high mechanical modulus of 10.4 GPa, which can homogenize the stress distribution during the plating process for effective dendrite suppression. Consequently, the SP-assisted asymmetric cell achieves nearly 99.94% Coulombic efficiency over 9000 cycles, enabling the Zn/Zn cell to cycle for over 540 h under an ultrahigh 92% Zn utilization. Outstanding cycling stability is also successfully demonstrated in high mass-loading (≈12.8 mg cm<sup>−2</sup>) pouch cells, further demonstrating its prospects for practical applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"5 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivalent Dipole Interactions-Driven Supramolecular Polymer Layer Enables Highly Stable Zn Anode Under Harsh Conditions\",\"authors\":\"Zhuanyi Liu, Suli Chen, Zhenhai Shi, Ping Qiu, Kun He, Qiongqiong Lu, Minghao Yu, Tianxi Liu\",\"doi\":\"10.1002/aenm.202502010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggressive side reactions and dendrite growth, associated with the unstable Zn anode/electrolyte interface, have impeded the practical application of Zn metal-based batteries. Here, a donor-acceptor (D-A) polymer is employed to reconstruct a robust supramolecular polymer (SP) protective layer to achieve highly stable Zn anodes. The D-A polymer possessing abundant electron donor and acceptor sites can dynamically co-crosslink with water molecules and Zn<sup>2</sup>⁺ through multivalent dipole interactions (MDIs), resulting in the formation of a supramolecular polymer network. The MDIs disrupt the original strong hydrogen-bonding network within the D-A polymer, leading to the reconfiguration of polymer chain conformations and an increase in the intermolecular free volume exposing more widely distributed dipoles, thereby regulating the Zn<sup>2+</sup> desolvation behavior and facilitating rapid and uniform Zn<sup>2+</sup> plating. Meanwhile, the resultant supramolecular network endows the SP with an ultra-high mechanical modulus of 10.4 GPa, which can homogenize the stress distribution during the plating process for effective dendrite suppression. Consequently, the SP-assisted asymmetric cell achieves nearly 99.94% Coulombic efficiency over 9000 cycles, enabling the Zn/Zn cell to cycle for over 540 h under an ultrahigh 92% Zn utilization. Outstanding cycling stability is also successfully demonstrated in high mass-loading (≈12.8 mg cm<sup>−2</sup>) pouch cells, further demonstrating its prospects for practical applications.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202502010\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于锌阳极/电解液界面不稳定,导致剧烈的副反应和枝晶生长,阻碍了锌金属基电池的实际应用。在这里,一个供体-受体(D-A)聚合物被用来重建一个强大的超分子聚合物(SP)保护层,以获得高度稳定的锌阳极。D-A聚合物具有丰富的电子供体和受体位点,可以通过多价偶极相互作用(mdi)与水分子和Zn2 +动态共交联,形成超分子聚合物网络。MDIs破坏了D-A聚合物内部原有的强氢键网络,导致聚合物链构象的重新配置和分子间自由体积的增加,暴露出更广泛分布的偶极子,从而调节了Zn2+的脱溶行为,促进了Zn2+的快速均匀电镀。同时,由此形成的超分子网络使SP具有10.4 GPa的超高力学模量,可以均匀化镀过程中的应力分布,有效抑制枝晶。因此,sp辅助的不对称电池在9000次循环中达到近99.94%的库仑效率,使Zn/Zn电池在超高的92% Zn利用率下循环超过540 h。在高质量负载(≈12.8 mg cm−2)袋状电池中也成功证明了出色的循环稳定性,进一步证明了其实际应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multivalent Dipole Interactions-Driven Supramolecular Polymer Layer Enables Highly Stable Zn Anode Under Harsh Conditions

Multivalent Dipole Interactions-Driven Supramolecular Polymer Layer Enables Highly Stable Zn Anode Under Harsh Conditions
Aggressive side reactions and dendrite growth, associated with the unstable Zn anode/electrolyte interface, have impeded the practical application of Zn metal-based batteries. Here, a donor-acceptor (D-A) polymer is employed to reconstruct a robust supramolecular polymer (SP) protective layer to achieve highly stable Zn anodes. The D-A polymer possessing abundant electron donor and acceptor sites can dynamically co-crosslink with water molecules and Zn2⁺ through multivalent dipole interactions (MDIs), resulting in the formation of a supramolecular polymer network. The MDIs disrupt the original strong hydrogen-bonding network within the D-A polymer, leading to the reconfiguration of polymer chain conformations and an increase in the intermolecular free volume exposing more widely distributed dipoles, thereby regulating the Zn2+ desolvation behavior and facilitating rapid and uniform Zn2+ plating. Meanwhile, the resultant supramolecular network endows the SP with an ultra-high mechanical modulus of 10.4 GPa, which can homogenize the stress distribution during the plating process for effective dendrite suppression. Consequently, the SP-assisted asymmetric cell achieves nearly 99.94% Coulombic efficiency over 9000 cycles, enabling the Zn/Zn cell to cycle for over 540 h under an ultrahigh 92% Zn utilization. Outstanding cycling stability is also successfully demonstrated in high mass-loading (≈12.8 mg cm−2) pouch cells, further demonstrating its prospects for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信