{"title":"不同类型聚丙烯纤维和FRP筋加固混凝土梁的抗弯性能","authors":"Zhiyi Tang, Xiongjun He, Bingyan Wei, Huayi Wang, Ming Zhou, Chao Wu","doi":"10.1016/j.jobe.2025.112650","DOIUrl":null,"url":null,"abstract":"The application of basalt fiber reinforced polymer (BFRP) and carbon fiber reinforced polymer (CFRP) reinforcements offers benefits such as high strength, excellent corrosion resistance, and eco-friendliness, making it a focal point in architectural advancements. The integration of polypropylene fiber (PPF) enhances the crack resistance of reinforced concrete (RC) beams and fiber-reinforced polymer reinforced concrete (FRPRC) beams, effectively mitigating the challenges associated with large quantities and widths of cracks in FRPRC beams. However, the performance characteristics, crack resistance, and relevant calculation methods of mesh polypropylene fiber (M-PPF) and imitation steel polypropylene fiber (IS-PPF) in relation to RC and FRPRC beams require further investigation. This study tested flexural load capacity of various types of PPF-RC beams and PPF-FRPRC beams. Utilizing concrete beam calculation methods from the three international codes, the cracking and ultimate load of both PPFRC and PPF-FRPRC beams were calculated, subsequently comparing and analyzing the results against experimental data. The integration of different types of PPF enhanced the compressive and splitting tensile strength of concrete by 9.87 % and 53.22 %, respectively. The cracking load of RC beams, BFRP-RC beams, and CFRP-RC beams increased by 17.13 %, 6.10 %, and 7.16 %, respectively, while the ultimate load increased by 6.28 %, 11.54 %, and 10.52 %, respectively. In the assessment of <mml:math altimg=\"si1.svg\"><mml:mrow><mml:msubsup><mml:mi>M</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>r</mml:mi></mml:mrow><mml:mi>exp</mml:mi></mml:msubsup><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">/</mml:mo><mml:msubsup><mml:mi>M</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi><mml:mi>a</mml:mi><mml:mi>l</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math> ratios derived from ACI (American Concrete Institute), CSA (Canadian Standards Association), and EC2 (Eurocode 2), the computational outcomes align most closely with the experimental results when following the EC2 specification. Regarding the evaluation of <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msubsup><mml:mi>M</mml:mi><mml:mi>u</mml:mi><mml:mi>exp</mml:mi></mml:msubsup><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">/</mml:mo><mml:msubsup><mml:mi>M</mml:mi><mml:mi>u</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>a</mml:mi><mml:mi>l</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math> ratios determined from ACI, ISIS (Intelligent Sensing for Innovative Structures), and GB 50608, the calculated results from ISIS and GB 50608 exhibit the closest proximity to the experimental results. The current standard used for determining the flexural capacity of concrete beams with varying reinforcement materials applies to the corresponding capacity assessments of diverse PPF-RC beams and PPF-FRPRC beams in this study. This validation demonstrates the viability and generalizability of the calculation methodologies for different types of PPF and FRP bars.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"34 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexural capacity of concrete beams reinforced by different types of polypropylene fibers and FRP bars\",\"authors\":\"Zhiyi Tang, Xiongjun He, Bingyan Wei, Huayi Wang, Ming Zhou, Chao Wu\",\"doi\":\"10.1016/j.jobe.2025.112650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of basalt fiber reinforced polymer (BFRP) and carbon fiber reinforced polymer (CFRP) reinforcements offers benefits such as high strength, excellent corrosion resistance, and eco-friendliness, making it a focal point in architectural advancements. The integration of polypropylene fiber (PPF) enhances the crack resistance of reinforced concrete (RC) beams and fiber-reinforced polymer reinforced concrete (FRPRC) beams, effectively mitigating the challenges associated with large quantities and widths of cracks in FRPRC beams. However, the performance characteristics, crack resistance, and relevant calculation methods of mesh polypropylene fiber (M-PPF) and imitation steel polypropylene fiber (IS-PPF) in relation to RC and FRPRC beams require further investigation. This study tested flexural load capacity of various types of PPF-RC beams and PPF-FRPRC beams. Utilizing concrete beam calculation methods from the three international codes, the cracking and ultimate load of both PPFRC and PPF-FRPRC beams were calculated, subsequently comparing and analyzing the results against experimental data. The integration of different types of PPF enhanced the compressive and splitting tensile strength of concrete by 9.87 % and 53.22 %, respectively. The cracking load of RC beams, BFRP-RC beams, and CFRP-RC beams increased by 17.13 %, 6.10 %, and 7.16 %, respectively, while the ultimate load increased by 6.28 %, 11.54 %, and 10.52 %, respectively. In the assessment of <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:msubsup><mml:mi>M</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>r</mml:mi></mml:mrow><mml:mi>exp</mml:mi></mml:msubsup><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">/</mml:mo><mml:msubsup><mml:mi>M</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>r</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi><mml:mi>a</mml:mi><mml:mi>l</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math> ratios derived from ACI (American Concrete Institute), CSA (Canadian Standards Association), and EC2 (Eurocode 2), the computational outcomes align most closely with the experimental results when following the EC2 specification. Regarding the evaluation of <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msubsup><mml:mi>M</mml:mi><mml:mi>u</mml:mi><mml:mi>exp</mml:mi></mml:msubsup><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">/</mml:mo><mml:msubsup><mml:mi>M</mml:mi><mml:mi>u</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mi>a</mml:mi><mml:mi>l</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math> ratios determined from ACI, ISIS (Intelligent Sensing for Innovative Structures), and GB 50608, the calculated results from ISIS and GB 50608 exhibit the closest proximity to the experimental results. The current standard used for determining the flexural capacity of concrete beams with varying reinforcement materials applies to the corresponding capacity assessments of diverse PPF-RC beams and PPF-FRPRC beams in this study. This validation demonstrates the viability and generalizability of the calculation methodologies for different types of PPF and FRP bars.\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jobe.2025.112650\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.112650","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
玄武岩纤维增强聚合物(BFRP)和碳纤维增强聚合物(CFRP)增强材料的应用具有高强度、优异的耐腐蚀性和生态友好性等优点,使其成为建筑进步的焦点。聚丙烯纤维(PPF)的掺入提高了钢筋混凝土(RC)梁和纤维增强聚合物增强混凝土(FRPRC)梁的抗裂性能,有效缓解了FRPRC梁裂缝数量大、宽度大的难题。然而,网状聚丙烯纤维(M-PPF)和仿钢聚丙烯纤维(IS-PPF)与RC和FRPRC梁的性能特点、抗裂性能及相关计算方法有待进一步研究。本研究测试了不同类型的PPF-RC梁和PPF-FRPRC梁的抗弯承载力。采用三个国际规范的混凝土梁计算方法,对PPFRC和PPF-FRPRC梁的开裂和极限荷载进行了计算,并与试验数据进行了对比分析。不同类型PPF的组合可使混凝土抗压强度和劈裂抗拉强度分别提高9.87%和53.22%。RC梁、BFRP-RC梁和CFRP-RC梁的开裂荷载分别增加了17.13%、6.10%和7.16%,极限荷载分别增加了6.28%、11.54%和10.52%。在由ACI(美国混凝土协会)、CSA(加拿大标准协会)和EC2(欧洲规范2)得出的Mcrexp/ mccrcal比率的评估中,当遵循EC2规范时,计算结果与实验结果最接近。在评价由ACI、ISIS (Intelligent Sensing for Innovative Structures)和GB 50608确定的Muexp/Mucal比值时,ISIS和GB 50608的计算结果与实验结果最接近。目前用于确定不同配筋材料混凝土梁抗弯承载力的标准适用于本研究中不同PPF-RC梁和PPF-FRPRC梁的相应承载力评估。这一验证证明了不同类型的PPF和FRP筋计算方法的可行性和普遍性。
Flexural capacity of concrete beams reinforced by different types of polypropylene fibers and FRP bars
The application of basalt fiber reinforced polymer (BFRP) and carbon fiber reinforced polymer (CFRP) reinforcements offers benefits such as high strength, excellent corrosion resistance, and eco-friendliness, making it a focal point in architectural advancements. The integration of polypropylene fiber (PPF) enhances the crack resistance of reinforced concrete (RC) beams and fiber-reinforced polymer reinforced concrete (FRPRC) beams, effectively mitigating the challenges associated with large quantities and widths of cracks in FRPRC beams. However, the performance characteristics, crack resistance, and relevant calculation methods of mesh polypropylene fiber (M-PPF) and imitation steel polypropylene fiber (IS-PPF) in relation to RC and FRPRC beams require further investigation. This study tested flexural load capacity of various types of PPF-RC beams and PPF-FRPRC beams. Utilizing concrete beam calculation methods from the three international codes, the cracking and ultimate load of both PPFRC and PPF-FRPRC beams were calculated, subsequently comparing and analyzing the results against experimental data. The integration of different types of PPF enhanced the compressive and splitting tensile strength of concrete by 9.87 % and 53.22 %, respectively. The cracking load of RC beams, BFRP-RC beams, and CFRP-RC beams increased by 17.13 %, 6.10 %, and 7.16 %, respectively, while the ultimate load increased by 6.28 %, 11.54 %, and 10.52 %, respectively. In the assessment of Mcrexp/Mcrcal ratios derived from ACI (American Concrete Institute), CSA (Canadian Standards Association), and EC2 (Eurocode 2), the computational outcomes align most closely with the experimental results when following the EC2 specification. Regarding the evaluation of Muexp/Mucal ratios determined from ACI, ISIS (Intelligent Sensing for Innovative Structures), and GB 50608, the calculated results from ISIS and GB 50608 exhibit the closest proximity to the experimental results. The current standard used for determining the flexural capacity of concrete beams with varying reinforcement materials applies to the corresponding capacity assessments of diverse PPF-RC beams and PPF-FRPRC beams in this study. This validation demonstrates the viability and generalizability of the calculation methodologies for different types of PPF and FRP bars.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.