Zehan Liu, Jin Yu, Chonghong Ren, Khalid Elbaz, Defu Zhu, Yanyan Cai
{"title":"低周载荷作用下岩石疲劳行为特征及寿命预测","authors":"Zehan Liu, Jin Yu, Chonghong Ren, Khalid Elbaz, Defu Zhu, Yanyan Cai","doi":"10.1016/j.ijmst.2025.03.007","DOIUrl":null,"url":null,"abstract":"The fatigue characteristics of rock materials significantly impact the economy and safety of underground structures during construction. Hence, it is essential to conduct further investigation into the progressive damage processes of rocks under cyclic loading conditions. This research utilised both laboratory experiments and discrete element simulations to investigate how confining pressure and fatigue upper limit stress influence the mechanical behaviour and crack development of marble under low-cycle fatigue conditions. By introducing synthetic displacement and reasonable assumptions, the classical damage evolution law was updated, resulting in a fatigue life prediction formula applicable to various rock materials and loading conditions. The results indicate that lower fatigue upper limit stress can delay the accumulation of damage and extend the fatigue life of the rock, but it results in more severe ultimate failure. The damage variable’s correlation with the relative number of loading cycles for different fatigue load upper limits under the same confining pressure can be approximated by the same functional relationship. The modified damage evolution model provides an effective characterisation of this trend. The proposed fatigue life prediction method comprehensively accounts for different rock materials, confining pressures, loading frequencies, and initial damage, showing a close match with actual results.","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"125 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue behaviour characteristics and life prediction of rock under low-cycle loading\",\"authors\":\"Zehan Liu, Jin Yu, Chonghong Ren, Khalid Elbaz, Defu Zhu, Yanyan Cai\",\"doi\":\"10.1016/j.ijmst.2025.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fatigue characteristics of rock materials significantly impact the economy and safety of underground structures during construction. Hence, it is essential to conduct further investigation into the progressive damage processes of rocks under cyclic loading conditions. This research utilised both laboratory experiments and discrete element simulations to investigate how confining pressure and fatigue upper limit stress influence the mechanical behaviour and crack development of marble under low-cycle fatigue conditions. By introducing synthetic displacement and reasonable assumptions, the classical damage evolution law was updated, resulting in a fatigue life prediction formula applicable to various rock materials and loading conditions. The results indicate that lower fatigue upper limit stress can delay the accumulation of damage and extend the fatigue life of the rock, but it results in more severe ultimate failure. The damage variable’s correlation with the relative number of loading cycles for different fatigue load upper limits under the same confining pressure can be approximated by the same functional relationship. The modified damage evolution model provides an effective characterisation of this trend. The proposed fatigue life prediction method comprehensively accounts for different rock materials, confining pressures, loading frequencies, and initial damage, showing a close match with actual results.\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijmst.2025.03.007\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmst.2025.03.007","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Fatigue behaviour characteristics and life prediction of rock under low-cycle loading
The fatigue characteristics of rock materials significantly impact the economy and safety of underground structures during construction. Hence, it is essential to conduct further investigation into the progressive damage processes of rocks under cyclic loading conditions. This research utilised both laboratory experiments and discrete element simulations to investigate how confining pressure and fatigue upper limit stress influence the mechanical behaviour and crack development of marble under low-cycle fatigue conditions. By introducing synthetic displacement and reasonable assumptions, the classical damage evolution law was updated, resulting in a fatigue life prediction formula applicable to various rock materials and loading conditions. The results indicate that lower fatigue upper limit stress can delay the accumulation of damage and extend the fatigue life of the rock, but it results in more severe ultimate failure. The damage variable’s correlation with the relative number of loading cycles for different fatigue load upper limits under the same confining pressure can be approximated by the same functional relationship. The modified damage evolution model provides an effective characterisation of this trend. The proposed fatigue life prediction method comprehensively accounts for different rock materials, confining pressures, loading frequencies, and initial damage, showing a close match with actual results.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.