功能碳点对高性能复合固体电解质多界面化学的协同调节

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huaxin Liu, Fangjun Zhu, Yinghao Zhang, Yuming Liu, Yi Zhang, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji
{"title":"功能碳点对高性能复合固体电解质多界面化学的协同调节","authors":"Huaxin Liu, Fangjun Zhu, Yinghao Zhang, Yuming Liu, Yi Zhang, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji","doi":"10.1002/anie.202505230","DOIUrl":null,"url":null,"abstract":"Low ionic conductivity, poor mechanical strength and unstable interface structure are still the main factors hindering the practical application of polymer solid‐state lithium metal batteries (SSLMBs). In this work, we have developed a unique composite filler (LLZTOCDs) for solid polymer electrolytes to address these challenges through synergistic regulation of multi‐interface chemistry. The LLZTOCDs is prepared via thermal treatment of N, S, F‐codoped carbon dots (NSFCDs) and Li6.5La3Zr1.5Ta0.5O12 (LLZTO) inorganic electrolyte, here the detrimental Li2CO3 on the LLZTO surface is converted into a fast ion‐conducting and an electron‐insulating interlayer of LiF and Li3N, and the carbon dots self‐assemble into a functional organophilic coating on the outermost layer, which acts as a bridge between the LLZTO and the polymer. This unique structure enhances the compatibility and ion‐exchange kinetics between the LLZTOCDs and the polymer, significantly improving the mechanical strength and Li+ transport. Additionally, the oxygen vacancies formed in‐situ at the LLZTOCDs interface provide an anion confinement effect, increasing lithium salt dissociation and enhancing the Li+ transference number to 0.85. Therefore, the solid battery constructed with LLZTOCDs exhibits excellent electrochemical stability, long‐cycle life, and high ionic conductivity (1.96 × 10−4 S cm‐1 at 25 °C), providing a feasible strategy for practical applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"41 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Regulation of Multi‐interface Chemistry by Functional Carbon Dots for High‐Performance Composite Solid Electrolytes\",\"authors\":\"Huaxin Liu, Fangjun Zhu, Yinghao Zhang, Yuming Liu, Yi Zhang, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji\",\"doi\":\"10.1002/anie.202505230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low ionic conductivity, poor mechanical strength and unstable interface structure are still the main factors hindering the practical application of polymer solid‐state lithium metal batteries (SSLMBs). In this work, we have developed a unique composite filler (LLZTOCDs) for solid polymer electrolytes to address these challenges through synergistic regulation of multi‐interface chemistry. The LLZTOCDs is prepared via thermal treatment of N, S, F‐codoped carbon dots (NSFCDs) and Li6.5La3Zr1.5Ta0.5O12 (LLZTO) inorganic electrolyte, here the detrimental Li2CO3 on the LLZTO surface is converted into a fast ion‐conducting and an electron‐insulating interlayer of LiF and Li3N, and the carbon dots self‐assemble into a functional organophilic coating on the outermost layer, which acts as a bridge between the LLZTO and the polymer. This unique structure enhances the compatibility and ion‐exchange kinetics between the LLZTOCDs and the polymer, significantly improving the mechanical strength and Li+ transport. Additionally, the oxygen vacancies formed in‐situ at the LLZTOCDs interface provide an anion confinement effect, increasing lithium salt dissociation and enhancing the Li+ transference number to 0.85. Therefore, the solid battery constructed with LLZTOCDs exhibits excellent electrochemical stability, long‐cycle life, and high ionic conductivity (1.96 × 10−4 S cm‐1 at 25 °C), providing a feasible strategy for practical applications.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505230\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505230","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子电导率低、机械强度差和界面结构不稳定仍然是阻碍聚合物固态锂金属电池(sslmb)实际应用的主要因素。在这项工作中,我们开发了一种独特的固体聚合物电解质复合填料(LLZTOCDs),通过协同调节多界面化学来解决这些挑战。通过对N, S, F共掺杂碳点(NSFCDs)和Li6.5La3Zr1.5Ta0.5O12 (LLZTO)无机电解质进行热处理制备LLZTOCDs, LLZTO表面有害的Li2CO3转化为LiF和Li3N的快速离子导电和电子绝缘中间层,并且碳点自组装成最外层的功能亲有机涂层,作为LLZTO和聚合物之间的桥梁。这种独特的结构增强了llztocd与聚合物之间的相容性和离子交换动力学,显著提高了机械强度和Li+传输。此外,在LLZTOCDs界面上原位形成的氧空位提供了阴离子约束效应,增加了锂盐的解离,并将Li+转移数提高到0.85。因此,用LLZTOCDs构建的固体电池具有优异的电化学稳定性、长循环寿命和高离子电导率(25°C时为1.96 × 10−4 S cm‐1),为实际应用提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Regulation of Multi‐interface Chemistry by Functional Carbon Dots for High‐Performance Composite Solid Electrolytes
Low ionic conductivity, poor mechanical strength and unstable interface structure are still the main factors hindering the practical application of polymer solid‐state lithium metal batteries (SSLMBs). In this work, we have developed a unique composite filler (LLZTOCDs) for solid polymer electrolytes to address these challenges through synergistic regulation of multi‐interface chemistry. The LLZTOCDs is prepared via thermal treatment of N, S, F‐codoped carbon dots (NSFCDs) and Li6.5La3Zr1.5Ta0.5O12 (LLZTO) inorganic electrolyte, here the detrimental Li2CO3 on the LLZTO surface is converted into a fast ion‐conducting and an electron‐insulating interlayer of LiF and Li3N, and the carbon dots self‐assemble into a functional organophilic coating on the outermost layer, which acts as a bridge between the LLZTO and the polymer. This unique structure enhances the compatibility and ion‐exchange kinetics between the LLZTOCDs and the polymer, significantly improving the mechanical strength and Li+ transport. Additionally, the oxygen vacancies formed in‐situ at the LLZTOCDs interface provide an anion confinement effect, increasing lithium salt dissociation and enhancing the Li+ transference number to 0.85. Therefore, the solid battery constructed with LLZTOCDs exhibits excellent electrochemical stability, long‐cycle life, and high ionic conductivity (1.96 × 10−4 S cm‐1 at 25 °C), providing a feasible strategy for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信