氢迁移对L10 - FePt 3d - 5d体系中自旋-轨道扭矩的可逆和非挥发性操纵

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingfang Zhang, Liang Liu, Taiyu An, Xue Ren, Xiangxiang Zhao, Hehe Ding, Zhiyu Zhang, Xu Zhang, Weijie Kuai, Guangjun Zhou, Bin Cui, Bin Cheng, Jifan Hu
{"title":"氢迁移对L10 - FePt 3d - 5d体系中自旋-轨道扭矩的可逆和非挥发性操纵","authors":"Mingfang Zhang, Liang Liu, Taiyu An, Xue Ren, Xiangxiang Zhao, Hehe Ding, Zhiyu Zhang, Xu Zhang, Weijie Kuai, Guangjun Zhou, Bin Cui, Bin Cheng, Jifan Hu","doi":"10.1002/adfm.202425679","DOIUrl":null,"url":null,"abstract":"Current‐induced spin‐orbit torque (SOT)‐driven magnetization switching is a cornerstone for future low‐energy‐consumption spintronics. However, achieving effective and controllable SOT remains a significant challenge. Here, a highly modulable SOT‐device is demonstrated based on the 3<jats:italic>d</jats:italic>‐5<jats:italic>d</jats:italic> alloy system <jats:italic>L</jats:italic>1<jats:sub>0</jats:sub>‐FePt, where the critical current density is modulated by ≈43% through the application of a gate voltage from a solid‐state hydrogen electrolyte. The harmonic measurements reveal that the SOT efficiency of <jats:italic>L</jats:italic>1<jats:sub>0</jats:sub>‐FePt film is enhanced by over 65% under a positive gate voltage and fully recovered under a negative voltage. The underneath hydrogen ion (H<jats:sup>+</jats:sup>) migration induced by the gate voltage is confirmed by X‐ray photoelectron spectroscopy (XPS) and depth‐resolved secondary ion mass spectroscopy (SIMS). Furthermore, first‐principles calculations uncover a novel spin‐current generation mechanism in the special 3<jats:italic>d</jats:italic>‐5<jats:italic>d</jats:italic> alloy <jats:italic>L</jats:italic>1<jats:sub>0</jats:sub>‐FePt, where both 3<jats:italic>d</jats:italic> and 5<jats:italic>d</jats:italic> electrons contribute large but competing spin currents, with the net effect dominated by the 3<jats:italic>d</jats:italic> electrons. The insertion of H<jats:sup>+</jats:sup> enhances the spin Hall conductance by 130%, primarily due to the significant enhancement of the reactive 3<jats:italic>d</jats:italic> electrons. These findings pave the way for modulable, non‐volatile, and low‐power spintronic and iontronic devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible and Non‐Volatile Manipulation on the Spin‐Orbit Torque in 3d‐5d System of L10‐FePt via Hydrogen Migration\",\"authors\":\"Mingfang Zhang, Liang Liu, Taiyu An, Xue Ren, Xiangxiang Zhao, Hehe Ding, Zhiyu Zhang, Xu Zhang, Weijie Kuai, Guangjun Zhou, Bin Cui, Bin Cheng, Jifan Hu\",\"doi\":\"10.1002/adfm.202425679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current‐induced spin‐orbit torque (SOT)‐driven magnetization switching is a cornerstone for future low‐energy‐consumption spintronics. However, achieving effective and controllable SOT remains a significant challenge. Here, a highly modulable SOT‐device is demonstrated based on the 3<jats:italic>d</jats:italic>‐5<jats:italic>d</jats:italic> alloy system <jats:italic>L</jats:italic>1<jats:sub>0</jats:sub>‐FePt, where the critical current density is modulated by ≈43% through the application of a gate voltage from a solid‐state hydrogen electrolyte. The harmonic measurements reveal that the SOT efficiency of <jats:italic>L</jats:italic>1<jats:sub>0</jats:sub>‐FePt film is enhanced by over 65% under a positive gate voltage and fully recovered under a negative voltage. The underneath hydrogen ion (H<jats:sup>+</jats:sup>) migration induced by the gate voltage is confirmed by X‐ray photoelectron spectroscopy (XPS) and depth‐resolved secondary ion mass spectroscopy (SIMS). Furthermore, first‐principles calculations uncover a novel spin‐current generation mechanism in the special 3<jats:italic>d</jats:italic>‐5<jats:italic>d</jats:italic> alloy <jats:italic>L</jats:italic>1<jats:sub>0</jats:sub>‐FePt, where both 3<jats:italic>d</jats:italic> and 5<jats:italic>d</jats:italic> electrons contribute large but competing spin currents, with the net effect dominated by the 3<jats:italic>d</jats:italic> electrons. The insertion of H<jats:sup>+</jats:sup> enhances the spin Hall conductance by 130%, primarily due to the significant enhancement of the reactive 3<jats:italic>d</jats:italic> electrons. These findings pave the way for modulable, non‐volatile, and low‐power spintronic and iontronic devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202425679\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425679","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电流诱导自旋轨道扭矩(SOT)驱动的磁化开关是未来低能耗自旋电子学的基石。然而,实现有效和可控的SOT仍然是一个重大挑战。本文展示了一种基于3d - 5d合金体系L10 - FePt的高可调SOT器件,通过施加来自固态氢电解质的栅极电压,临界电流密度被调制约43%。谐波测量结果表明,在正栅极电压下,L10‐FePt薄膜的SOT效率提高了65%以上,在负栅极电压下完全恢复。X射线光电子能谱(XPS)和深度分辨二次离子质谱(SIMS)证实了栅极电压诱导下的氢离子(H+)迁移。此外,第一线原理计算揭示了特殊的3d - 5d合金L10 - FePt中一种新的自旋电流产生机制,其中3d和5d电子都贡献了巨大但相互竞争的自旋电流,净效应由3d电子主导。H+的插入使自旋霍尔电导提高了130%,这主要是由于反应性三维电子的显著增强。这些发现为可调、非易失性和低功率自旋电子和离子电子器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversible and Non‐Volatile Manipulation on the Spin‐Orbit Torque in 3d‐5d System of L10‐FePt via Hydrogen Migration

Reversible and Non‐Volatile Manipulation on the Spin‐Orbit Torque in 3d‐5d System of L10‐FePt via Hydrogen Migration
Current‐induced spin‐orbit torque (SOT)‐driven magnetization switching is a cornerstone for future low‐energy‐consumption spintronics. However, achieving effective and controllable SOT remains a significant challenge. Here, a highly modulable SOT‐device is demonstrated based on the 3d‐5d alloy system L10‐FePt, where the critical current density is modulated by ≈43% through the application of a gate voltage from a solid‐state hydrogen electrolyte. The harmonic measurements reveal that the SOT efficiency of L10‐FePt film is enhanced by over 65% under a positive gate voltage and fully recovered under a negative voltage. The underneath hydrogen ion (H+) migration induced by the gate voltage is confirmed by X‐ray photoelectron spectroscopy (XPS) and depth‐resolved secondary ion mass spectroscopy (SIMS). Furthermore, first‐principles calculations uncover a novel spin‐current generation mechanism in the special 3d‐5d alloy L10‐FePt, where both 3d and 5d electrons contribute large but competing spin currents, with the net effect dominated by the 3d electrons. The insertion of H+ enhances the spin Hall conductance by 130%, primarily due to the significant enhancement of the reactive 3d electrons. These findings pave the way for modulable, non‐volatile, and low‐power spintronic and iontronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信