轴向配位调节p -嵌段In - N4位的电子离域以加速硫还原反应

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuechao Jiao, Jie Lei, Zheng Huang, Yinze Zuo, Zewen Zhuang, Yiyuan Luo, Jing Qi, Zheng Wang, Linlong Lu, Wei Yan, Jiujun Zhang
{"title":"轴向配位调节p -嵌段In - N4位的电子离域以加速硫还原反应","authors":"Xuechao Jiao, Jie Lei, Zheng Huang, Yinze Zuo, Zewen Zhuang, Yiyuan Luo, Jing Qi, Zheng Wang, Linlong Lu, Wei Yan, Jiujun Zhang","doi":"10.1002/adfm.202505204","DOIUrl":null,"url":null,"abstract":"Modulating the electron delocalization of catalysts can improve the activation and conversion capabilities of lithium polysulfides (LiPSs) in lithium‐sulfur batteries, while the precise mechanism underlying this enhancement remains unclear. Herein, a p‐block In single‐atom catalysts (In‐N<jats:sub>4</jats:sub>) is constructed with moderate electron delocalization via axial coordination engineering of gallium nitride (GaN), which exhibits the best adsorption and electrocatalytic activity toward LiPSs. In situ characterization analysis combined with advanced theoretical calculations demonstrate that the axial In‐N‐Ga coordination induces the electron transfer from In sites toward the N sites of GaN and the unconventional sp<jats:sup>3</jats:sup>d<jats:sup>2</jats:sup> hybridization interactions of In sites. This further helps to optimize adsorption configuration through the orbital hybridization between sp<jats:sup>3</jats:sup>d<jats:sup>2</jats:sup> hybrid orbital of In sites and <jats:italic>p</jats:italic> orbital of S atoms in LiPSs, namely the sp<jats:sup>3</jats:sup>d<jats:sup>2</jats:sup> − <jats:italic>p</jats:italic> orbital hybridization, which can weaken S−S covalent bonds of LiPSs and significantly accelerate the sulfur reduction reaction. Accordingly, the capacity decay of lithium‐sulfur battery with In−SA/GaN catalyst is only 0.040% per cycle over 800 cycles at 5 C. The stacked pouch cell delivers a reversible capacity of 600 mAh after 100 cycles. This work elaborates on the activity origin of p‐block metal catalysts and provides a new perspective on designing advanced catalysts for other catalytic systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"108 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial Coordination Regulating Electronic Delocalization of p‐Block In−N4 Sites to Accelerate Sulfur Reduction Reaction\",\"authors\":\"Xuechao Jiao, Jie Lei, Zheng Huang, Yinze Zuo, Zewen Zhuang, Yiyuan Luo, Jing Qi, Zheng Wang, Linlong Lu, Wei Yan, Jiujun Zhang\",\"doi\":\"10.1002/adfm.202505204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modulating the electron delocalization of catalysts can improve the activation and conversion capabilities of lithium polysulfides (LiPSs) in lithium‐sulfur batteries, while the precise mechanism underlying this enhancement remains unclear. Herein, a p‐block In single‐atom catalysts (In‐N<jats:sub>4</jats:sub>) is constructed with moderate electron delocalization via axial coordination engineering of gallium nitride (GaN), which exhibits the best adsorption and electrocatalytic activity toward LiPSs. In situ characterization analysis combined with advanced theoretical calculations demonstrate that the axial In‐N‐Ga coordination induces the electron transfer from In sites toward the N sites of GaN and the unconventional sp<jats:sup>3</jats:sup>d<jats:sup>2</jats:sup> hybridization interactions of In sites. This further helps to optimize adsorption configuration through the orbital hybridization between sp<jats:sup>3</jats:sup>d<jats:sup>2</jats:sup> hybrid orbital of In sites and <jats:italic>p</jats:italic> orbital of S atoms in LiPSs, namely the sp<jats:sup>3</jats:sup>d<jats:sup>2</jats:sup> − <jats:italic>p</jats:italic> orbital hybridization, which can weaken S−S covalent bonds of LiPSs and significantly accelerate the sulfur reduction reaction. Accordingly, the capacity decay of lithium‐sulfur battery with In−SA/GaN catalyst is only 0.040% per cycle over 800 cycles at 5 C. The stacked pouch cell delivers a reversible capacity of 600 mAh after 100 cycles. This work elaborates on the activity origin of p‐block metal catalysts and provides a new perspective on designing advanced catalysts for other catalytic systems.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202505204\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202505204","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

调节催化剂的电子离域可以提高锂硫电池中锂多硫化物(LiPSs)的活化和转化能力,但这种增强的确切机制尚不清楚。本文通过氮化镓(GaN)的轴向配位工程,构建了具有适度电子离域的p -嵌段In - N4单原子催化剂,该催化剂对LiPSs具有最佳的吸附和电催化活性。原位表征分析结合先进的理论计算表明,轴向In - N - Ga配位诱导了电子从In位向GaN的N位转移以及In位的非常规sp3d2杂化相互作用。这进一步有助于优化吸附构型,通过在LiPSs中In位点的sp3d2杂化轨道和S原子的p轨道之间的轨道杂化,即sp3d2 - p轨道杂化,可以削弱LiPSs的S - S共价键,显著加速硫还原反应。因此,在5℃下,使用In−SA/GaN催化剂的锂硫电池在800次循环中,每次循环的容量衰减仅为0.040%。堆叠袋状电池在100次循环后提供600 mAh的可逆容量。本研究阐述了p -嵌段金属催化剂的活性来源,为设计其他催化体系的先进催化剂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Axial Coordination Regulating Electronic Delocalization of p‐Block In−N4 Sites to Accelerate Sulfur Reduction Reaction

Axial Coordination Regulating Electronic Delocalization of p‐Block In−N4 Sites to Accelerate Sulfur Reduction Reaction
Modulating the electron delocalization of catalysts can improve the activation and conversion capabilities of lithium polysulfides (LiPSs) in lithium‐sulfur batteries, while the precise mechanism underlying this enhancement remains unclear. Herein, a p‐block In single‐atom catalysts (In‐N4) is constructed with moderate electron delocalization via axial coordination engineering of gallium nitride (GaN), which exhibits the best adsorption and electrocatalytic activity toward LiPSs. In situ characterization analysis combined with advanced theoretical calculations demonstrate that the axial In‐N‐Ga coordination induces the electron transfer from In sites toward the N sites of GaN and the unconventional sp3d2 hybridization interactions of In sites. This further helps to optimize adsorption configuration through the orbital hybridization between sp3d2 hybrid orbital of In sites and p orbital of S atoms in LiPSs, namely the sp3d2p orbital hybridization, which can weaken S−S covalent bonds of LiPSs and significantly accelerate the sulfur reduction reaction. Accordingly, the capacity decay of lithium‐sulfur battery with In−SA/GaN catalyst is only 0.040% per cycle over 800 cycles at 5 C. The stacked pouch cell delivers a reversible capacity of 600 mAh after 100 cycles. This work elaborates on the activity origin of p‐block metal catalysts and provides a new perspective on designing advanced catalysts for other catalytic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信