{"title":"猪废水缺氧-缺氧处理过程中氮代谢微生物的抗生素耐药性概况","authors":"Yiwen Yang, Shuang Cai, Feng Huang, Chunhao Mo, Yongbao Wu, Junting Cao, Sheng Chen, Zhiguo Wen, Xindi Liao","doi":"10.1038/s41545-025-00464-4","DOIUrl":null,"url":null,"abstract":"<p>The anoxic-oxic (A/O) process is the most common biological method for removing nitrogen (N) from wastewater, but the antibiotic resistance profile of N-metabolizing microbes in A/O processes remains largely underexplored. Here we demonstrated a significant positive correlation between various types of N-metabolizing genes and antibiotic resistance genes (ARGs) in swine wastewater A/O processes across China. We assembled 180 high-quality genomes of dominant N-metabolizing microbes (12.6% of the total metagenome-assembled genomes), all harboring transcriptionally active ARGs. And Pseudomonas was identified as the primary N-metabolizing genus and major ARG host. Among 1110 culturable N-metabolizing isolates, 22.34% were Pseudomonas strains showing high N removal capacity and multi-antibiotic resistance. Moreover, plasmid-mediated ARG transfer further heightened resistance risks. Overall, these findings highlight a significant ARG risk among predominant N-metabolizing microbes in A/O treatment processes, underscoring the urgency of balancing N removal performance with resistance control in wastewater treatment processes.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"11 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic resistance profile of nitrogen-metabolizing microbes in anoxic‒oxic processes for swine wastewater treatment\",\"authors\":\"Yiwen Yang, Shuang Cai, Feng Huang, Chunhao Mo, Yongbao Wu, Junting Cao, Sheng Chen, Zhiguo Wen, Xindi Liao\",\"doi\":\"10.1038/s41545-025-00464-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The anoxic-oxic (A/O) process is the most common biological method for removing nitrogen (N) from wastewater, but the antibiotic resistance profile of N-metabolizing microbes in A/O processes remains largely underexplored. Here we demonstrated a significant positive correlation between various types of N-metabolizing genes and antibiotic resistance genes (ARGs) in swine wastewater A/O processes across China. We assembled 180 high-quality genomes of dominant N-metabolizing microbes (12.6% of the total metagenome-assembled genomes), all harboring transcriptionally active ARGs. And Pseudomonas was identified as the primary N-metabolizing genus and major ARG host. Among 1110 culturable N-metabolizing isolates, 22.34% were Pseudomonas strains showing high N removal capacity and multi-antibiotic resistance. Moreover, plasmid-mediated ARG transfer further heightened resistance risks. Overall, these findings highlight a significant ARG risk among predominant N-metabolizing microbes in A/O treatment processes, underscoring the urgency of balancing N removal performance with resistance control in wastewater treatment processes.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00464-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00464-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Antibiotic resistance profile of nitrogen-metabolizing microbes in anoxic‒oxic processes for swine wastewater treatment
The anoxic-oxic (A/O) process is the most common biological method for removing nitrogen (N) from wastewater, but the antibiotic resistance profile of N-metabolizing microbes in A/O processes remains largely underexplored. Here we demonstrated a significant positive correlation between various types of N-metabolizing genes and antibiotic resistance genes (ARGs) in swine wastewater A/O processes across China. We assembled 180 high-quality genomes of dominant N-metabolizing microbes (12.6% of the total metagenome-assembled genomes), all harboring transcriptionally active ARGs. And Pseudomonas was identified as the primary N-metabolizing genus and major ARG host. Among 1110 culturable N-metabolizing isolates, 22.34% were Pseudomonas strains showing high N removal capacity and multi-antibiotic resistance. Moreover, plasmid-mediated ARG transfer further heightened resistance risks. Overall, these findings highlight a significant ARG risk among predominant N-metabolizing microbes in A/O treatment processes, underscoring the urgency of balancing N removal performance with resistance control in wastewater treatment processes.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.