用于质子传导固体氧化物电解电池的高法拉第效率活性氧电极

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Weilin Zhang, Qian Zhang, Pengxi Zhu, Yuqing Meng, Zeyu Zhao, Wanhua Wang, Yong Ding, Quanwen Sun, Yuchen Zhang, Meng Li, Hao Deng, Bin Liu, Wei Wu, Dong Ding
{"title":"用于质子传导固体氧化物电解电池的高法拉第效率活性氧电极","authors":"Weilin Zhang, Qian Zhang, Pengxi Zhu, Yuqing Meng, Zeyu Zhao, Wanhua Wang, Yong Ding, Quanwen Sun, Yuchen Zhang, Meng Li, Hao Deng, Bin Liu, Wei Wu, Dong Ding","doi":"10.1002/aenm.202500852","DOIUrl":null,"url":null,"abstract":"Addressing the challenges posed by inferior electrochemical performance at low temperatures and the uncertain Faradaic efficiency (FE) represents a pivotal undertaking in the development of high performance and efficient proton‐conducting solid oxide electrolysis cells (P‐SOECs). In this work, a novel oxygen electrode material BaCo<jats:sub>0.8</jats:sub>Zr<jats:sub>0.1</jats:sub>Zn<jats:sub>0.1</jats:sub>O<jats:sub>3‐δ</jats:sub> (BCZZ) is first designed and synthesized. At 600 °C, P‐SOECs with BCZZ oxygen electrode achieve an electrolysis current density of 1.98 A cm<jats:sup>−2</jats:sup> with an ≈90% FE at 1.3 V. Utilizing 1‐inch P‐SOECs as a reliable platform, the effect of extrinsic operating conditions (i.e., steam concentration, voltage, current density, and temperature) and intrinsic properties of P‐SOECs (i.e., electrolyte material and electrolyte thickness) on FE are further systemically investigated, both experimentally and theoretically.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"38 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Active Oxygen Electrode for Proton‐Conducting Solid Oxide Electrolysis Cells with High Faradaic Efficiency\",\"authors\":\"Weilin Zhang, Qian Zhang, Pengxi Zhu, Yuqing Meng, Zeyu Zhao, Wanhua Wang, Yong Ding, Quanwen Sun, Yuchen Zhang, Meng Li, Hao Deng, Bin Liu, Wei Wu, Dong Ding\",\"doi\":\"10.1002/aenm.202500852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the challenges posed by inferior electrochemical performance at low temperatures and the uncertain Faradaic efficiency (FE) represents a pivotal undertaking in the development of high performance and efficient proton‐conducting solid oxide electrolysis cells (P‐SOECs). In this work, a novel oxygen electrode material BaCo<jats:sub>0.8</jats:sub>Zr<jats:sub>0.1</jats:sub>Zn<jats:sub>0.1</jats:sub>O<jats:sub>3‐δ</jats:sub> (BCZZ) is first designed and synthesized. At 600 °C, P‐SOECs with BCZZ oxygen electrode achieve an electrolysis current density of 1.98 A cm<jats:sup>−2</jats:sup> with an ≈90% FE at 1.3 V. Utilizing 1‐inch P‐SOECs as a reliable platform, the effect of extrinsic operating conditions (i.e., steam concentration, voltage, current density, and temperature) and intrinsic properties of P‐SOECs (i.e., electrolyte material and electrolyte thickness) on FE are further systemically investigated, both experimentally and theoretically.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202500852\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500852","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

解决低温下较差的电化学性能和不确定的法拉第效率(FE)所带来的挑战,是开发高性能、高效质子传导固体氧化物电解电池(P - soec)的关键任务。本文首次设计并合成了一种新型氧电极材料BaCo0.8Zr0.1Zn0.1O3‐δ (BCZZ)。在600°C下,具有BCZZ氧电极的P‐soec在1.3 V下的电解电流密度为1.98 A cm−2,FE≈90%。利用1英寸P‐soec作为可靠的平台,进一步系统地研究了P‐soec的外部操作条件(即蒸汽浓度、电压、电流密度和温度)和内在特性(即电解质材料和电解质厚度)对FE的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Active Oxygen Electrode for Proton‐Conducting Solid Oxide Electrolysis Cells with High Faradaic Efficiency

An Active Oxygen Electrode for Proton‐Conducting Solid Oxide Electrolysis Cells with High Faradaic Efficiency
Addressing the challenges posed by inferior electrochemical performance at low temperatures and the uncertain Faradaic efficiency (FE) represents a pivotal undertaking in the development of high performance and efficient proton‐conducting solid oxide electrolysis cells (P‐SOECs). In this work, a novel oxygen electrode material BaCo0.8Zr0.1Zn0.1O3‐δ (BCZZ) is first designed and synthesized. At 600 °C, P‐SOECs with BCZZ oxygen electrode achieve an electrolysis current density of 1.98 A cm−2 with an ≈90% FE at 1.3 V. Utilizing 1‐inch P‐SOECs as a reliable platform, the effect of extrinsic operating conditions (i.e., steam concentration, voltage, current density, and temperature) and intrinsic properties of P‐SOECs (i.e., electrolyte material and electrolyte thickness) on FE are further systemically investigated, both experimentally and theoretically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信