Yu Chen, Shai Zilberzwige-Tal, Nathan D. Rosenmann, Julia Oktawiec, Ashley K. Nensel, Qing Ma, Sasha Lichtenstein, Ehud Gazit, Nathan C. Gianneschi
{"title":"分层多孔肌肽-锌微球","authors":"Yu Chen, Shai Zilberzwige-Tal, Nathan D. Rosenmann, Julia Oktawiec, Ashley K. Nensel, Qing Ma, Sasha Lichtenstein, Ehud Gazit, Nathan C. Gianneschi","doi":"10.1016/j.matt.2025.102108","DOIUrl":null,"url":null,"abstract":"Hierarchically porous materials have broad applications in biotechnology and medicine, yet current fabrication methods often lack scalability and biocompatibility. Here, we present a peptide-coordination self-assembly approach to prepare hierarchically porous microspheres composed of naturally occurring carnosine dipeptide and coordinated Zn(II) ions. Metal coordination led to microsphere formation featuring interconnected channels with a hierarchically porous structure. Characterization with scanning electron and transmission electron microscopy, as well as with extended X-ray absorption fine structure, confirmed its nanofibrous architecture and local Zn(II) coordination environment. Liquid cell transmission electron microscopy, in turn, provided real-time insight into the assembly process, revealing a stepwise process from nanoclusters to nanofibers and ultimately to porous microspheres. The carnosine-Zn(II) microspheres exhibit intrinsic blue fluorescence and high porosity, containing both micropores and mesopores, which facilitate efficient mass transport and biomolecule immobilization. We leverage these properties to generate reusable, cell-free synthesis nanoreactors, to enhance DNA transcription and translation and protect against nuclease degradation.","PeriodicalId":388,"journal":{"name":"Matter","volume":"219 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically porous carnosine-Zn microspheres\",\"authors\":\"Yu Chen, Shai Zilberzwige-Tal, Nathan D. Rosenmann, Julia Oktawiec, Ashley K. Nensel, Qing Ma, Sasha Lichtenstein, Ehud Gazit, Nathan C. Gianneschi\",\"doi\":\"10.1016/j.matt.2025.102108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchically porous materials have broad applications in biotechnology and medicine, yet current fabrication methods often lack scalability and biocompatibility. Here, we present a peptide-coordination self-assembly approach to prepare hierarchically porous microspheres composed of naturally occurring carnosine dipeptide and coordinated Zn(II) ions. Metal coordination led to microsphere formation featuring interconnected channels with a hierarchically porous structure. Characterization with scanning electron and transmission electron microscopy, as well as with extended X-ray absorption fine structure, confirmed its nanofibrous architecture and local Zn(II) coordination environment. Liquid cell transmission electron microscopy, in turn, provided real-time insight into the assembly process, revealing a stepwise process from nanoclusters to nanofibers and ultimately to porous microspheres. The carnosine-Zn(II) microspheres exhibit intrinsic blue fluorescence and high porosity, containing both micropores and mesopores, which facilitate efficient mass transport and biomolecule immobilization. We leverage these properties to generate reusable, cell-free synthesis nanoreactors, to enhance DNA transcription and translation and protect against nuclease degradation.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102108\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchically porous materials have broad applications in biotechnology and medicine, yet current fabrication methods often lack scalability and biocompatibility. Here, we present a peptide-coordination self-assembly approach to prepare hierarchically porous microspheres composed of naturally occurring carnosine dipeptide and coordinated Zn(II) ions. Metal coordination led to microsphere formation featuring interconnected channels with a hierarchically porous structure. Characterization with scanning electron and transmission electron microscopy, as well as with extended X-ray absorption fine structure, confirmed its nanofibrous architecture and local Zn(II) coordination environment. Liquid cell transmission electron microscopy, in turn, provided real-time insight into the assembly process, revealing a stepwise process from nanoclusters to nanofibers and ultimately to porous microspheres. The carnosine-Zn(II) microspheres exhibit intrinsic blue fluorescence and high porosity, containing both micropores and mesopores, which facilitate efficient mass transport and biomolecule immobilization. We leverage these properties to generate reusable, cell-free synthesis nanoreactors, to enhance DNA transcription and translation and protect against nuclease degradation.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.