微扰图谱中差异表达的转录组分析

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Ajay Nadig, Joseph M. Replogle, Angela N. Pogson, Mukundh Murthy, Steven A. McCarroll, Jonathan S. Weissman, Elise B. Robinson, Luke J. O’Connor
{"title":"微扰图谱中差异表达的转录组分析","authors":"Ajay Nadig, Joseph M. Replogle, Angela N. Pogson, Mukundh Murthy, Steven A. McCarroll, Jonathan S. Weissman, Elise B. Robinson, Luke J. O’Connor","doi":"10.1038/s41588-025-02169-3","DOIUrl":null,"url":null,"abstract":"Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)—a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the ‘transcriptome-wide impact’, which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders. Transcriptome-wide analysis of differential expression (TRADE) is a broadly applicable tool for characterizing patterns of differential expression across the genome.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 5","pages":"1228-1237"},"PeriodicalIF":31.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome-wide analysis of differential expression in perturbation atlases\",\"authors\":\"Ajay Nadig, Joseph M. Replogle, Angela N. Pogson, Mukundh Murthy, Steven A. McCarroll, Jonathan S. Weissman, Elise B. Robinson, Luke J. O’Connor\",\"doi\":\"10.1038/s41588-025-02169-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)—a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the ‘transcriptome-wide impact’, which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders. Transcriptome-wide analysis of differential expression (TRADE) is a broadly applicable tool for characterizing patterns of differential expression across the genome.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"57 5\",\"pages\":\"1228-1237\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-025-02169-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02169-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞CRISPR筛选,如Perturb-seq,可以大规模地对遗传扰动进行转录组分析。然而,这些屏幕产生的数据是嘈杂的,许多影响可能没有被发现。在这里,我们介绍了转录组范围内的差异表达分析(TRADE),这是一种用于真实差异表达效应分布的统计模型,可以适当地解释估计误差。TRADE估计了“转录组范围内的影响”,它量化了整个转录组的扰动的总影响。通过对几个大型Perturb-seq数据集的分析,我们发现许多转录效应在标准分析中未被检测到,但在使用TRADE的汇总分析中出现了。一个典型的基因扰动影响大约45个基因,而一个典型的基本基因影响超过500个。我们发现不同细胞类型的扰动效应具有中等程度的一致性,确定了在不同剂量水平上转录反应发生定性变化的扰动,并阐明了神经精神疾病中遗传和转录组相关性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transcriptome-wide analysis of differential expression in perturbation atlases

Transcriptome-wide analysis of differential expression in perturbation atlases
Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)—a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the ‘transcriptome-wide impact’, which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders. Transcriptome-wide analysis of differential expression (TRADE) is a broadly applicable tool for characterizing patterns of differential expression across the genome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信