Wiep van der Toorn, Patrick Bohn, Wang Liu-Wei, Marco Olguin-Nava, Anne-Sophie Gribling-Burrer, Redmond P. Smyth, Max von Kleist
{"title":"纳米孔直接RNA测序的解复用和条形码特异性自适应采样","authors":"Wiep van der Toorn, Patrick Bohn, Wang Liu-Wei, Marco Olguin-Nava, Anne-Sophie Gribling-Burrer, Redmond P. Smyth, Max von Kleist","doi":"10.1038/s41467-025-59102-9","DOIUrl":null,"url":null,"abstract":"<p>Nanopore direct RNA sequencing (dRNA-seq) enables unique insights into RNA biology. However, applications are currently limited by the lack of accurate and cost-effective sample multiplexing. Here we introduce WarpDemuX, an ultra-fast and highly accurate adapter-barcoding and demultiplexing approach for dRNA-seq with SQK-RNA002 and SQK-RNA004 chemistries. WarpDemuX enhances speed and accuracy by fast processing of the raw nanopore signal, use of a light-weight machine-learning algorithm and design of optimized barcode sets. We demonstrate its utility by performing rapid phenotypic profiling of different SARS-CoV-2 viruses through multiplexed sequencing of longitudinal samples on a single flowcell, identifying systematic differences in transcript abundance and poly(A) tail lengths during infection. Additionally, integrating WarpDemuX into sequencing control software enables real-time enrichment of target molecules through barcode-specific adaptive sampling, which we demonstrate by enriching low abundance viral RNA. In summary, WarpDemuX represents a broadly applicable, high-performance, economical multiplexing solution for dRNA-seq, facilitating advanced (epi-) transcriptomic research.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demultiplexing and barcode-specific adaptive sampling for nanopore direct RNA sequencing\",\"authors\":\"Wiep van der Toorn, Patrick Bohn, Wang Liu-Wei, Marco Olguin-Nava, Anne-Sophie Gribling-Burrer, Redmond P. Smyth, Max von Kleist\",\"doi\":\"10.1038/s41467-025-59102-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanopore direct RNA sequencing (dRNA-seq) enables unique insights into RNA biology. However, applications are currently limited by the lack of accurate and cost-effective sample multiplexing. Here we introduce WarpDemuX, an ultra-fast and highly accurate adapter-barcoding and demultiplexing approach for dRNA-seq with SQK-RNA002 and SQK-RNA004 chemistries. WarpDemuX enhances speed and accuracy by fast processing of the raw nanopore signal, use of a light-weight machine-learning algorithm and design of optimized barcode sets. We demonstrate its utility by performing rapid phenotypic profiling of different SARS-CoV-2 viruses through multiplexed sequencing of longitudinal samples on a single flowcell, identifying systematic differences in transcript abundance and poly(A) tail lengths during infection. Additionally, integrating WarpDemuX into sequencing control software enables real-time enrichment of target molecules through barcode-specific adaptive sampling, which we demonstrate by enriching low abundance viral RNA. In summary, WarpDemuX represents a broadly applicable, high-performance, economical multiplexing solution for dRNA-seq, facilitating advanced (epi-) transcriptomic research.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59102-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59102-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Demultiplexing and barcode-specific adaptive sampling for nanopore direct RNA sequencing
Nanopore direct RNA sequencing (dRNA-seq) enables unique insights into RNA biology. However, applications are currently limited by the lack of accurate and cost-effective sample multiplexing. Here we introduce WarpDemuX, an ultra-fast and highly accurate adapter-barcoding and demultiplexing approach for dRNA-seq with SQK-RNA002 and SQK-RNA004 chemistries. WarpDemuX enhances speed and accuracy by fast processing of the raw nanopore signal, use of a light-weight machine-learning algorithm and design of optimized barcode sets. We demonstrate its utility by performing rapid phenotypic profiling of different SARS-CoV-2 viruses through multiplexed sequencing of longitudinal samples on a single flowcell, identifying systematic differences in transcript abundance and poly(A) tail lengths during infection. Additionally, integrating WarpDemuX into sequencing control software enables real-time enrichment of target molecules through barcode-specific adaptive sampling, which we demonstrate by enriching low abundance viral RNA. In summary, WarpDemuX represents a broadly applicable, high-performance, economical multiplexing solution for dRNA-seq, facilitating advanced (epi-) transcriptomic research.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.