一维 AWO4 和 A2O3 结构高熵氧化物纳米线及其优异的氧进化反应

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Lei Yang , Yiting Dong , Xiaoxian Tian , Jun Yin , Qingwan Wang , Wanxin Wu , Ying Yang , Lulu Tang , Xueqin Yuan
{"title":"一维 AWO4 和 A2O3 结构高熵氧化物纳米线及其优异的氧进化反应","authors":"Lei Yang ,&nbsp;Yiting Dong ,&nbsp;Xiaoxian Tian ,&nbsp;Jun Yin ,&nbsp;Qingwan Wang ,&nbsp;Wanxin Wu ,&nbsp;Ying Yang ,&nbsp;Lulu Tang ,&nbsp;Xueqin Yuan","doi":"10.1016/j.jallcom.2025.180556","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxides have shown great potential to replace the noble metal-based catalysts in electrochemical oxygen evolution reaction (OER) process. High entropy oxides (HEOs) containing five or more equimolar cations in a single phase are promising electrocatalysts for enhancing OER efficiency due to their tunable electrochemical properties. Moreover, one dimensional (1D) structure materials with larger surface area can decrease the diffusion length for reactants and products, which is beneficial to the kinetics and mass transport of OER process. In this paper, a series of 1D AWO<sub>4</sub> and A<sub>2</sub>O<sub>3</sub> structured HEO nanowires (NWs) which are composed of six or five different transition metal elements are synthesized via a simple electrospinning strategy followed by heat treatment in air. Benefitting from the 1D structure and the synergetic effects between multiple metal cations, the as-synthesized AWO<sub>4</sub> and A<sub>2</sub>O<sub>3</sub> structured HEO NWs are proved to exhibit the superior OER performance than that of HEO nanoparticles (NPs), medium entropy oxides (MEOs) NWs and single component metal oxide NWs. The AWO<sub>4</sub> (A<sub>2</sub>O<sub>3</sub>) structured HEO NWs show excellent catalytic activity with the overpotential of 296–451 mV (348–487 mV) at the current density of 10 mA/cm<sup>2</sup> and the Tafel slope of 58–75 mV/dec (61–72 mV/dec). Our work enriches the choice of advanced materials for OER catalysts and provides a new idea to design and prepare the nanostructured HEOs in the field of new energy resources.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1027 ","pages":"Article 180556"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One dimensional AWO4 and A2O3 structured high entropy oxide nanowires and their superior oxygen evolution reaction\",\"authors\":\"Lei Yang ,&nbsp;Yiting Dong ,&nbsp;Xiaoxian Tian ,&nbsp;Jun Yin ,&nbsp;Qingwan Wang ,&nbsp;Wanxin Wu ,&nbsp;Ying Yang ,&nbsp;Lulu Tang ,&nbsp;Xueqin Yuan\",\"doi\":\"10.1016/j.jallcom.2025.180556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal oxides have shown great potential to replace the noble metal-based catalysts in electrochemical oxygen evolution reaction (OER) process. High entropy oxides (HEOs) containing five or more equimolar cations in a single phase are promising electrocatalysts for enhancing OER efficiency due to their tunable electrochemical properties. Moreover, one dimensional (1D) structure materials with larger surface area can decrease the diffusion length for reactants and products, which is beneficial to the kinetics and mass transport of OER process. In this paper, a series of 1D AWO<sub>4</sub> and A<sub>2</sub>O<sub>3</sub> structured HEO nanowires (NWs) which are composed of six or five different transition metal elements are synthesized via a simple electrospinning strategy followed by heat treatment in air. Benefitting from the 1D structure and the synergetic effects between multiple metal cations, the as-synthesized AWO<sub>4</sub> and A<sub>2</sub>O<sub>3</sub> structured HEO NWs are proved to exhibit the superior OER performance than that of HEO nanoparticles (NPs), medium entropy oxides (MEOs) NWs and single component metal oxide NWs. The AWO<sub>4</sub> (A<sub>2</sub>O<sub>3</sub>) structured HEO NWs show excellent catalytic activity with the overpotential of 296–451 mV (348–487 mV) at the current density of 10 mA/cm<sup>2</sup> and the Tafel slope of 58–75 mV/dec (61–72 mV/dec). Our work enriches the choice of advanced materials for OER catalysts and provides a new idea to design and prepare the nanostructured HEOs in the field of new energy resources.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1027 \",\"pages\":\"Article 180556\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825021176\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825021176","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物在电化学析氧反应(OER)过程中取代贵金属基催化剂显示出巨大的潜力。高熵氧化物(HEOs)在单相中含有5个或更多等摩尔阳离子,由于其可调节的电化学性质,是提高OER效率的有前途的电催化剂。此外,具有较大表面积的一维结构材料可以缩短反应物和生成物的扩散长度,有利于OER过程的动力学和传质。本文采用简单的静电纺丝工艺,在空气中热处理,合成了一系列由6种或5种不同过渡金属元素组成的一维AWO4和A2O3结构的HEO纳米线(NWs)。得益于一维结构和多个金属阳离子之间的协同效应,合成的AWO4和A2O3结构的HEO NWs比HEO纳米颗粒(NPs)、中熵氧化物(MEOs) NWs和单组分金属氧化物NWs具有更好的OER性能。AWO4 (A2O3)结构的HEO NWs表现出优异的催化活性,在电流密度为10 mA/cm2时,过电位为296 ~ 451 mV (348 ~ 487 mV), Tafel斜率为58 ~ 75 mV/dec (61 ~ 72 mV/dec)。我们的工作丰富了OER催化剂先进材料的选择,为新能源领域纳米结构heo的设计和制备提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One dimensional AWO4 and A2O3 structured high entropy oxide nanowires and their superior oxygen evolution reaction

One dimensional AWO4 and A2O3 structured high entropy oxide nanowires and their superior oxygen evolution reaction
Transition metal oxides have shown great potential to replace the noble metal-based catalysts in electrochemical oxygen evolution reaction (OER) process. High entropy oxides (HEOs) containing five or more equimolar cations in a single phase are promising electrocatalysts for enhancing OER efficiency due to their tunable electrochemical properties. Moreover, one dimensional (1D) structure materials with larger surface area can decrease the diffusion length for reactants and products, which is beneficial to the kinetics and mass transport of OER process. In this paper, a series of 1D AWO4 and A2O3 structured HEO nanowires (NWs) which are composed of six or five different transition metal elements are synthesized via a simple electrospinning strategy followed by heat treatment in air. Benefitting from the 1D structure and the synergetic effects between multiple metal cations, the as-synthesized AWO4 and A2O3 structured HEO NWs are proved to exhibit the superior OER performance than that of HEO nanoparticles (NPs), medium entropy oxides (MEOs) NWs and single component metal oxide NWs. The AWO4 (A2O3) structured HEO NWs show excellent catalytic activity with the overpotential of 296–451 mV (348–487 mV) at the current density of 10 mA/cm2 and the Tafel slope of 58–75 mV/dec (61–72 mV/dec). Our work enriches the choice of advanced materials for OER catalysts and provides a new idea to design and prepare the nanostructured HEOs in the field of new energy resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信