假肠白菌DSM20193对啤酒废粮发酵过程中糖代谢的调控

IF 5.7 2区 生物学
Koirala Prabin, Maina Ndegwa, Mojzita Dominik, Coda Rossana
{"title":"假肠白菌DSM20193对啤酒废粮发酵过程中糖代谢的调控","authors":"Koirala Prabin,&nbsp;Maina Ndegwa,&nbsp;Mojzita Dominik,&nbsp;Coda Rossana","doi":"10.1111/1751-7915.70116","DOIUrl":null,"url":null,"abstract":"<p>Re-utilising brewers' spent grain (BSG) through LAB fermentation can enable its broad use in the food industry, enhancing its nutritional and functional properties and offering a clear example of a sustainable approach in the valorisation of food side streams. Despite extensive research on LAB fermentation, the regulation of metabolism during the growth in complex food-industry-relevant environments remains unclear. This study investigates the metabolic processes in <i>Leuconostoc pseudomesenteroides</i> DSM20193 during 24 h fermentation of BSG with and without 4% sucrose (w/w) supplementation, allowing in situ dextran synthesis. Besides dextran synthesis, the presence of sucrose led to faster acidification, especially due to the increased formation of acetic acid. Furthermore, differences in the utilisation of sucrose, fructose, glucose, and maltose and the formation of diverse oligosaccharides were observed. Transcriptome analysis comparing expression profiles during 0 h and 16 h growth in BSG with sucrose revealed differences in the expression of genes involved in carbohydrate utilisation pathways, including higher activity of sucrose and maltose metabolism and lower activity of metabolism related to alternative carbon sources. Transcription analysis of selected relevant genes in a time-course comparison between BSG with and without sucrose provided more detailed indications of responses of the metabolic network in this complex environment. This analysis provided a deeper understanding of the dynamic regulatory mechanism that drives sugar metabolism and dextran synthesis and how the presence of sucrose can alter the metabolic flux towards different fermentation products.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70116","citationCount":"0","resultStr":"{\"title\":\"Regulation of Sugar Metabolism During Fermentation of Brewers' Spent Grain by Leuconostoc pseudomesenteroides DSM20193\",\"authors\":\"Koirala Prabin,&nbsp;Maina Ndegwa,&nbsp;Mojzita Dominik,&nbsp;Coda Rossana\",\"doi\":\"10.1111/1751-7915.70116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Re-utilising brewers' spent grain (BSG) through LAB fermentation can enable its broad use in the food industry, enhancing its nutritional and functional properties and offering a clear example of a sustainable approach in the valorisation of food side streams. Despite extensive research on LAB fermentation, the regulation of metabolism during the growth in complex food-industry-relevant environments remains unclear. This study investigates the metabolic processes in <i>Leuconostoc pseudomesenteroides</i> DSM20193 during 24 h fermentation of BSG with and without 4% sucrose (w/w) supplementation, allowing in situ dextran synthesis. Besides dextran synthesis, the presence of sucrose led to faster acidification, especially due to the increased formation of acetic acid. Furthermore, differences in the utilisation of sucrose, fructose, glucose, and maltose and the formation of diverse oligosaccharides were observed. Transcriptome analysis comparing expression profiles during 0 h and 16 h growth in BSG with sucrose revealed differences in the expression of genes involved in carbohydrate utilisation pathways, including higher activity of sucrose and maltose metabolism and lower activity of metabolism related to alternative carbon sources. Transcription analysis of selected relevant genes in a time-course comparison between BSG with and without sucrose provided more detailed indications of responses of the metabolic network in this complex environment. This analysis provided a deeper understanding of the dynamic regulatory mechanism that drives sugar metabolism and dextran synthesis and how the presence of sucrose can alter the metabolic flux towards different fermentation products.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70116\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70116\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70116","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过酵母菌(LAB)发酵重新利用啤酒糟(BSG)可以使其在食品工业中得到广泛应用,提高其营养和功能特性,并为食品副产品的可持续增值提供了一个清晰的范例。尽管对酵母菌发酵进行了广泛研究,但在复杂的食品工业相关环境中生长过程中的新陈代谢调控仍不清楚。本研究调查了假丝酵母(Leuconostoc pseudomesenteroides DSM20193)在添加或不添加 4% 蔗糖(重量比)的情况下对 BSG 进行 24 小时发酵过程中的新陈代谢过程,以便在原位合成葡聚糖。除了葡聚糖合成外,蔗糖的存在还导致酸化速度加快,特别是由于乙酸的形成增加。此外,还观察到蔗糖、果糖、葡萄糖和麦芽糖的利用率以及各种寡糖的形成存在差异。转录组分析比较了在含蔗糖的 BSG 中生长 0 小时和 16 小时期间的表达谱,发现涉及碳水化合物利用途径的基因表达存在差异,包括蔗糖和麦芽糖代谢活性较高,而与替代碳源相关的代谢活性较低。通过对添加和不添加蔗糖的 BSG 进行时程比较,对选定的相关基因进行转录分析,可以更详细地说明代谢网络在这种复杂环境中的反应。这项分析加深了对驱动糖代谢和葡聚糖合成的动态调控机制以及蔗糖的存在如何改变不同发酵产物的代谢通量的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulation of Sugar Metabolism During Fermentation of Brewers' Spent Grain by Leuconostoc pseudomesenteroides DSM20193

Regulation of Sugar Metabolism During Fermentation of Brewers' Spent Grain by Leuconostoc pseudomesenteroides DSM20193

Re-utilising brewers' spent grain (BSG) through LAB fermentation can enable its broad use in the food industry, enhancing its nutritional and functional properties and offering a clear example of a sustainable approach in the valorisation of food side streams. Despite extensive research on LAB fermentation, the regulation of metabolism during the growth in complex food-industry-relevant environments remains unclear. This study investigates the metabolic processes in Leuconostoc pseudomesenteroides DSM20193 during 24 h fermentation of BSG with and without 4% sucrose (w/w) supplementation, allowing in situ dextran synthesis. Besides dextran synthesis, the presence of sucrose led to faster acidification, especially due to the increased formation of acetic acid. Furthermore, differences in the utilisation of sucrose, fructose, glucose, and maltose and the formation of diverse oligosaccharides were observed. Transcriptome analysis comparing expression profiles during 0 h and 16 h growth in BSG with sucrose revealed differences in the expression of genes involved in carbohydrate utilisation pathways, including higher activity of sucrose and maltose metabolism and lower activity of metabolism related to alternative carbon sources. Transcription analysis of selected relevant genes in a time-course comparison between BSG with and without sucrose provided more detailed indications of responses of the metabolic network in this complex environment. This analysis provided a deeper understanding of the dynamic regulatory mechanism that drives sugar metabolism and dextran synthesis and how the presence of sucrose can alter the metabolic flux towards different fermentation products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信