探索表面涂层对金属有机纳米管内吸水性和选择性的影响

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vidumini S. Samarasiri, Sarah McGee, Tori Z. Forbes
{"title":"探索表面涂层对金属有机纳米管内吸水性和选择性的影响","authors":"Vidumini S. Samarasiri,&nbsp;Sarah McGee,&nbsp;Tori Z. Forbes","doi":"10.1002/admi.202400731","DOIUrl":null,"url":null,"abstract":"<p>Mechanisms of uptake in metal–organic materials are complex and are dependent on the chemistry of the pore space and material interface. In the current study, the importance of the material surface is evaluated on the water uptake of a metal–organic nanotube (UMONT) crystalline solid. This material has previously demonstrated selective water uptake and reported isotherms suggested a two-step adsorption process that involved initial surface adsorption followed by pore filling. The proposed mechanism and importance of surface chemistry for water adsorption are tested by altering the surface of the UMONT with more hydrophobic surface coatings. Crystals of UMONT are coated with ammonium trifluoroacetate (ATFA), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN), and the water adsorption behavior is analyzed through batch and flow-through experiments. Uptake experiments reveal that ATFA significantly decreased the water uptake compared to observed in pristine UMONT while polymer coatings do not impact the adsorption behavior as significantly. In addition, ATFA disrupts the water selectivity of the UMONT material, allowing both ethanol and methanol to be detected in the system. These results indicate that changing the surface layer from a hydrophilic to hydrophobic with a chemisorbed monolayer will disturb the two-step mechanism and the water uptake properties of the material.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400731","citationCount":"0","resultStr":"{\"title\":\"Exploring Impacts of Surface Coatings to Modify Water Uptake and Selectivity within Metal–Organic Nanotubes\",\"authors\":\"Vidumini S. Samarasiri,&nbsp;Sarah McGee,&nbsp;Tori Z. Forbes\",\"doi\":\"10.1002/admi.202400731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mechanisms of uptake in metal–organic materials are complex and are dependent on the chemistry of the pore space and material interface. In the current study, the importance of the material surface is evaluated on the water uptake of a metal–organic nanotube (UMONT) crystalline solid. This material has previously demonstrated selective water uptake and reported isotherms suggested a two-step adsorption process that involved initial surface adsorption followed by pore filling. The proposed mechanism and importance of surface chemistry for water adsorption are tested by altering the surface of the UMONT with more hydrophobic surface coatings. Crystals of UMONT are coated with ammonium trifluoroacetate (ATFA), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN), and the water adsorption behavior is analyzed through batch and flow-through experiments. Uptake experiments reveal that ATFA significantly decreased the water uptake compared to observed in pristine UMONT while polymer coatings do not impact the adsorption behavior as significantly. In addition, ATFA disrupts the water selectivity of the UMONT material, allowing both ethanol and methanol to be detected in the system. These results indicate that changing the surface layer from a hydrophilic to hydrophobic with a chemisorbed monolayer will disturb the two-step mechanism and the water uptake properties of the material.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400731\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400731\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400731","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属有机材料的吸水机制非常复杂,取决于孔隙空间和材料界面的化学性质。本研究评估了材料表面对金属有机纳米管(UMONT)结晶固体吸水的重要性。这种材料以前曾展示过选择性吸水,报告的等温线表明吸水过程分为两步,第一步是表面吸附,第二步是孔隙填充。通过使用更疏水的表面涂层来改变 UMONT 的表面,对所提出的吸水机制和表面化学的重要性进行了测试。在 UMONT 晶体上涂覆了三氟乙酸铵 (ATFA)、聚偏氟乙烯 (PVDF) 和聚丙烯腈 (PAN),并通过间歇实验和流动实验分析了吸水行为。吸水实验表明,与原始 UMONT 相比,ATFA 大大降低了吸水率,而聚合物涂层对吸附行为的影响并不明显。此外,ATFA 破坏了 UMONT 材料对水的选择性,使得乙醇和甲醇都能在系统中检测到。这些结果表明,将表层从亲水变为具有化学吸附单层的疏水层会干扰材料的两步机理和吸水特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Impacts of Surface Coatings to Modify Water Uptake and Selectivity within Metal–Organic Nanotubes

Exploring Impacts of Surface Coatings to Modify Water Uptake and Selectivity within Metal–Organic Nanotubes

Mechanisms of uptake in metal–organic materials are complex and are dependent on the chemistry of the pore space and material interface. In the current study, the importance of the material surface is evaluated on the water uptake of a metal–organic nanotube (UMONT) crystalline solid. This material has previously demonstrated selective water uptake and reported isotherms suggested a two-step adsorption process that involved initial surface adsorption followed by pore filling. The proposed mechanism and importance of surface chemistry for water adsorption are tested by altering the surface of the UMONT with more hydrophobic surface coatings. Crystals of UMONT are coated with ammonium trifluoroacetate (ATFA), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN), and the water adsorption behavior is analyzed through batch and flow-through experiments. Uptake experiments reveal that ATFA significantly decreased the water uptake compared to observed in pristine UMONT while polymer coatings do not impact the adsorption behavior as significantly. In addition, ATFA disrupts the water selectivity of the UMONT material, allowing both ethanol and methanol to be detected in the system. These results indicate that changing the surface layer from a hydrophilic to hydrophobic with a chemisorbed monolayer will disturb the two-step mechanism and the water uptake properties of the material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信