{"title":"依达拉奉与5-甲酰基嘧啶碱基和含有5-甲酰基胞苷残基的DNA寡核苷酸共价结合的HR-MS分析","authors":"Romain Regnault, Mostafa Kouach, Laurence Goossens, Xavier Thuru, Christian Bailly, Jean-François Goossens","doi":"10.1002/rcm.10050","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Rationale</h3>\n \n <p>Edaravone (EDA) is a radical scavenger and an antioxidant drug approved to treat amyotrophic lateral sclerosis and used as a research tool to explore treatment of neurodegenerative diseases and cancers. It is also a reactive agent, known as PMP (1-phenyl-3-methyl-5-pyrazolone), used for the analysis of polysaccharides composition. EDA can react with sugars and aromatic aldehydes. In this context, we have investigated the reactivity of EDA toward the biologically relevant formylated nucleobases, nucleosides, and an oligonucleotide containing a formylated residue.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The formation of both mono- and bis-adducts between EDA and the formylated nucleobases (5-formyluracil (5fU) and 5-formylcytosine (5fC)) or the corresponding nucleosides 5-fdU and 5-fdC was characterized using high-resolution mass spectrometry (HR-MS). Similarly, the covalent binding of EDA to an 8-mer palindromic oligonucleotide d (TATG[*C]ATA) containing a single 5-fdC residue [*C] under physiological conditions was investigated using mass spectrometry.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>For the first time, EDA is shown to react with formylated pyrimidines. Covalent and stable adducts were identified. EDA was found to react efficiently with the formylated oligonucleotide to generate mono- and bis-adducts. The rate of formation of the mono-adduct was five times higher than that of the bis-adduct. The reaction of EDA with aldehydic DNA modifications such as 5fU/5fC may have important consequences in terms of gene expression.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>These observations raise implications for an epigenetic contribution to the mechanism of action of EDA. The biological implications of our in vitro results are discussed, notably in the frame of neurodegenerative diseases and cancers.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 14","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rcm.10050","citationCount":"0","resultStr":"{\"title\":\"HR-MS Analysis of the Covalent Binding of Edaravone to 5-Formylpyrimidine Bases and a DNA Oligonucleotide Containing a 5-Formylcytidine Residue\",\"authors\":\"Romain Regnault, Mostafa Kouach, Laurence Goossens, Xavier Thuru, Christian Bailly, Jean-François Goossens\",\"doi\":\"10.1002/rcm.10050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Rationale</h3>\\n \\n <p>Edaravone (EDA) is a radical scavenger and an antioxidant drug approved to treat amyotrophic lateral sclerosis and used as a research tool to explore treatment of neurodegenerative diseases and cancers. It is also a reactive agent, known as PMP (1-phenyl-3-methyl-5-pyrazolone), used for the analysis of polysaccharides composition. EDA can react with sugars and aromatic aldehydes. In this context, we have investigated the reactivity of EDA toward the biologically relevant formylated nucleobases, nucleosides, and an oligonucleotide containing a formylated residue.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The formation of both mono- and bis-adducts between EDA and the formylated nucleobases (5-formyluracil (5fU) and 5-formylcytosine (5fC)) or the corresponding nucleosides 5-fdU and 5-fdC was characterized using high-resolution mass spectrometry (HR-MS). Similarly, the covalent binding of EDA to an 8-mer palindromic oligonucleotide d (TATG[*C]ATA) containing a single 5-fdC residue [*C] under physiological conditions was investigated using mass spectrometry.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>For the first time, EDA is shown to react with formylated pyrimidines. Covalent and stable adducts were identified. EDA was found to react efficiently with the formylated oligonucleotide to generate mono- and bis-adducts. The rate of formation of the mono-adduct was five times higher than that of the bis-adduct. The reaction of EDA with aldehydic DNA modifications such as 5fU/5fC may have important consequences in terms of gene expression.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>These observations raise implications for an epigenetic contribution to the mechanism of action of EDA. The biological implications of our in vitro results are discussed, notably in the frame of neurodegenerative diseases and cancers.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"39 14\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rcm.10050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.10050\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.10050","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
HR-MS Analysis of the Covalent Binding of Edaravone to 5-Formylpyrimidine Bases and a DNA Oligonucleotide Containing a 5-Formylcytidine Residue
Rationale
Edaravone (EDA) is a radical scavenger and an antioxidant drug approved to treat amyotrophic lateral sclerosis and used as a research tool to explore treatment of neurodegenerative diseases and cancers. It is also a reactive agent, known as PMP (1-phenyl-3-methyl-5-pyrazolone), used for the analysis of polysaccharides composition. EDA can react with sugars and aromatic aldehydes. In this context, we have investigated the reactivity of EDA toward the biologically relevant formylated nucleobases, nucleosides, and an oligonucleotide containing a formylated residue.
Methods
The formation of both mono- and bis-adducts between EDA and the formylated nucleobases (5-formyluracil (5fU) and 5-formylcytosine (5fC)) or the corresponding nucleosides 5-fdU and 5-fdC was characterized using high-resolution mass spectrometry (HR-MS). Similarly, the covalent binding of EDA to an 8-mer palindromic oligonucleotide d (TATG[*C]ATA) containing a single 5-fdC residue [*C] under physiological conditions was investigated using mass spectrometry.
Results
For the first time, EDA is shown to react with formylated pyrimidines. Covalent and stable adducts were identified. EDA was found to react efficiently with the formylated oligonucleotide to generate mono- and bis-adducts. The rate of formation of the mono-adduct was five times higher than that of the bis-adduct. The reaction of EDA with aldehydic DNA modifications such as 5fU/5fC may have important consequences in terms of gene expression.
Conclusions
These observations raise implications for an epigenetic contribution to the mechanism of action of EDA. The biological implications of our in vitro results are discussed, notably in the frame of neurodegenerative diseases and cancers.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.