Abdul Aziz Channa, Kamran Munir, Mark Hansen, Muhammad Fahim Tariq
{"title":"水培系统的能量优化——整合可再生资源和水作为可持续粮食生产的能量缓冲","authors":"Abdul Aziz Channa, Kamran Munir, Mark Hansen, Muhammad Fahim Tariq","doi":"10.1002/ese3.70038","DOIUrl":null,"url":null,"abstract":"<p>Aquaponics, a symbiotic integration of aquaculture and hydroponics, has emerged as a promising solution for sustainable food production, offering efficient water and land utilisation. However, the high energy costs associated with maintaining optimal water conditions remain a critical factor in ensuring its long-term viability. While renewable energy sources like solar and wind power can offset the high energy costs, their intermittent nature limits their effectiveness. Batteries, often used as energy buffers during these intermittencies, but introduce additional costs and environmental concerns. This study presents a novel energy optimisation approach for aquaponic systems. We employed a dynamic control algorithm to intelligently adjust water temperature based on solar forecasts. By leveraging system water as a thermal energy buffer, the method reduces reliance on grid power during solar intermittencies, thereby enhancing renewable energy integration. Simulations reveal that this approach can achieve up to 26.9% annual reduction in energy consumption for aquaponic systems compared to conventional methods. This strategy not only decreases energy usage but also highlights the potential for aquaponics to evolve into a more sustainable and cost-effective solution for food production.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"2098-2111"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70038","citationCount":"0","resultStr":"{\"title\":\"Energy Optimisation in Aquaponics—Integrating Renewable Source and Water as Energy Buffer for Sustainable Food Production\",\"authors\":\"Abdul Aziz Channa, Kamran Munir, Mark Hansen, Muhammad Fahim Tariq\",\"doi\":\"10.1002/ese3.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aquaponics, a symbiotic integration of aquaculture and hydroponics, has emerged as a promising solution for sustainable food production, offering efficient water and land utilisation. However, the high energy costs associated with maintaining optimal water conditions remain a critical factor in ensuring its long-term viability. While renewable energy sources like solar and wind power can offset the high energy costs, their intermittent nature limits their effectiveness. Batteries, often used as energy buffers during these intermittencies, but introduce additional costs and environmental concerns. This study presents a novel energy optimisation approach for aquaponic systems. We employed a dynamic control algorithm to intelligently adjust water temperature based on solar forecasts. By leveraging system water as a thermal energy buffer, the method reduces reliance on grid power during solar intermittencies, thereby enhancing renewable energy integration. Simulations reveal that this approach can achieve up to 26.9% annual reduction in energy consumption for aquaponic systems compared to conventional methods. This strategy not only decreases energy usage but also highlights the potential for aquaponics to evolve into a more sustainable and cost-effective solution for food production.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 4\",\"pages\":\"2098-2111\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70038\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Energy Optimisation in Aquaponics—Integrating Renewable Source and Water as Energy Buffer for Sustainable Food Production
Aquaponics, a symbiotic integration of aquaculture and hydroponics, has emerged as a promising solution for sustainable food production, offering efficient water and land utilisation. However, the high energy costs associated with maintaining optimal water conditions remain a critical factor in ensuring its long-term viability. While renewable energy sources like solar and wind power can offset the high energy costs, their intermittent nature limits their effectiveness. Batteries, often used as energy buffers during these intermittencies, but introduce additional costs and environmental concerns. This study presents a novel energy optimisation approach for aquaponic systems. We employed a dynamic control algorithm to intelligently adjust water temperature based on solar forecasts. By leveraging system water as a thermal energy buffer, the method reduces reliance on grid power during solar intermittencies, thereby enhancing renewable energy integration. Simulations reveal that this approach can achieve up to 26.9% annual reduction in energy consumption for aquaponic systems compared to conventional methods. This strategy not only decreases energy usage but also highlights the potential for aquaponics to evolve into a more sustainable and cost-effective solution for food production.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.