{"title":"非线性负荷对太阳能微电网电能质量的影响及缓解策略","authors":"Exaud Tweve, Baraka Kichonge, Thomas Kivevele","doi":"10.1002/ese3.70019","DOIUrl":null,"url":null,"abstract":"<p>The integration of solar energy into microgrids poses significant challenges in maintaining power quality due to the variable nature of solar generation and the presence of nonlinear loads such as uninterruptible power supplies (UPS), variable frequency drives (VFDs), rectifiers, and power electronic components. Active power filters are often used to mitigate harmonics; however, these solutions are complex due to the use of control techniques like the synchronous reference frame and can introduce additional harmonic currents during compensation within electrical systems. This study investigates the effects of different nonlinear loads on the power quality of solar microgrids and explores the reduction of harmonics from VFDs through the application of passive harmonic filters (PHFs). The objective was achieved by measuring harmonics generated by nonlinear loads and simulating a modeled VFD circuit using MATLAB/Simulink R2021b software, considering the demand side. Analysis of current harmonics measurements at the point of common coupling revealed that the total harmonic current distortion (THCD) for UPS, VFDs, and rectifiers was 20.64%, 42.82%, and 22.59%, respectively, while the total harmonic voltage distortion (THVD) for UPS, VFDs, and rectifiers was 27.83%, 31.55%, and 29.16%, respectively. Moreover, the total losses caused by harmonic distortion from these nonlinear loads is 860 Watts. Among these loads, VFDs were the dominant source of harmonics. Therefore, the application of passive harmonic filters (PHFs) was proposed to minimize harmonics in solar microgrids, adhering to the standards set by the Institution of Electrical and Electronics Engineers (IEEE) and the International Electro-Technical Commission (IEC). Simulation of the VFD revealed that the THCD was reduced by 89.4% and the THVD was minimized by 89.9% due to the connection of passive harmonic filters. These filters have the capability to minimize harmonics to within IEEE 519 standard limits.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"1960-1982"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70019","citationCount":"0","resultStr":"{\"title\":\"Impacts of Nonlinear Loads on the Power Quality of Solar Microgrids and Proposed Mitigation Strategies\",\"authors\":\"Exaud Tweve, Baraka Kichonge, Thomas Kivevele\",\"doi\":\"10.1002/ese3.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of solar energy into microgrids poses significant challenges in maintaining power quality due to the variable nature of solar generation and the presence of nonlinear loads such as uninterruptible power supplies (UPS), variable frequency drives (VFDs), rectifiers, and power electronic components. Active power filters are often used to mitigate harmonics; however, these solutions are complex due to the use of control techniques like the synchronous reference frame and can introduce additional harmonic currents during compensation within electrical systems. This study investigates the effects of different nonlinear loads on the power quality of solar microgrids and explores the reduction of harmonics from VFDs through the application of passive harmonic filters (PHFs). The objective was achieved by measuring harmonics generated by nonlinear loads and simulating a modeled VFD circuit using MATLAB/Simulink R2021b software, considering the demand side. Analysis of current harmonics measurements at the point of common coupling revealed that the total harmonic current distortion (THCD) for UPS, VFDs, and rectifiers was 20.64%, 42.82%, and 22.59%, respectively, while the total harmonic voltage distortion (THVD) for UPS, VFDs, and rectifiers was 27.83%, 31.55%, and 29.16%, respectively. Moreover, the total losses caused by harmonic distortion from these nonlinear loads is 860 Watts. Among these loads, VFDs were the dominant source of harmonics. Therefore, the application of passive harmonic filters (PHFs) was proposed to minimize harmonics in solar microgrids, adhering to the standards set by the Institution of Electrical and Electronics Engineers (IEEE) and the International Electro-Technical Commission (IEC). Simulation of the VFD revealed that the THCD was reduced by 89.4% and the THVD was minimized by 89.9% due to the connection of passive harmonic filters. These filters have the capability to minimize harmonics to within IEEE 519 standard limits.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 4\",\"pages\":\"1960-1982\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70019\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Impacts of Nonlinear Loads on the Power Quality of Solar Microgrids and Proposed Mitigation Strategies
The integration of solar energy into microgrids poses significant challenges in maintaining power quality due to the variable nature of solar generation and the presence of nonlinear loads such as uninterruptible power supplies (UPS), variable frequency drives (VFDs), rectifiers, and power electronic components. Active power filters are often used to mitigate harmonics; however, these solutions are complex due to the use of control techniques like the synchronous reference frame and can introduce additional harmonic currents during compensation within electrical systems. This study investigates the effects of different nonlinear loads on the power quality of solar microgrids and explores the reduction of harmonics from VFDs through the application of passive harmonic filters (PHFs). The objective was achieved by measuring harmonics generated by nonlinear loads and simulating a modeled VFD circuit using MATLAB/Simulink R2021b software, considering the demand side. Analysis of current harmonics measurements at the point of common coupling revealed that the total harmonic current distortion (THCD) for UPS, VFDs, and rectifiers was 20.64%, 42.82%, and 22.59%, respectively, while the total harmonic voltage distortion (THVD) for UPS, VFDs, and rectifiers was 27.83%, 31.55%, and 29.16%, respectively. Moreover, the total losses caused by harmonic distortion from these nonlinear loads is 860 Watts. Among these loads, VFDs were the dominant source of harmonics. Therefore, the application of passive harmonic filters (PHFs) was proposed to minimize harmonics in solar microgrids, adhering to the standards set by the Institution of Electrical and Electronics Engineers (IEEE) and the International Electro-Technical Commission (IEC). Simulation of the VFD revealed that the THCD was reduced by 89.4% and the THVD was minimized by 89.9% due to the connection of passive harmonic filters. These filters have the capability to minimize harmonics to within IEEE 519 standard limits.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.