Yasser Elhenawy, Kareem Fouad, Ahmed Refaat, Osama A. Al-Qabandi, Monica Toderaș, Mohamed Bassyouni
{"title":"纳米流体冷却增强聚光光伏组件热电效率的实验研究","authors":"Yasser Elhenawy, Kareem Fouad, Ahmed Refaat, Osama A. Al-Qabandi, Monica Toderaș, Mohamed Bassyouni","doi":"10.1002/ese3.2026","DOIUrl":null,"url":null,"abstract":"<p>Electricity production from photovoltaic panels is a clean and promising technology. However, increased panel temperatures resulting from solar intensity notably reduce productivity. Cooling these panels through diverse technologies becomes essential to enhance power generation and extend cell lifetime. In this study, electricity generation for concentrated photovoltaic (CPV) panels was enhanced by cooling with Al<sub>2</sub>O<sub>3</sub>/water nanofluid. An experimental analysis of the thermal and electrical efficiency of cooled and uncooled CPV was employed. Various loadings (0.3–0.9 wt%) of Al<sub>2</sub>O<sub>3</sub> were utilized to investigate the effect of Al<sub>2</sub>O<sub>3</sub> on overall performance. Each run was carried out at a flow rate of 1.0 L/min. The results showed that Al<sub>2</sub>O<sub>3</sub>/water nanofluid at a loading of 0.9 wt% resulted in a significant decrease in photovoltaic surface temperature. The temperature at the surface of CPV was significantly decreased by 52%. The electrical yield reached its maximum at 45 and 46 W/h using CPV without and with cooling water, respectively. The electricity generation was remarkably enhanced up to 54 W/h at 0.9 wt% Al<sub>2</sub>O<sub>3</sub>/water nanofluid. Electrical and thermal efficiency improved by 21% and 65%, respectively using 0.9 wt% of Al<sub>2</sub>O<sub>3</sub>. The total daily savings in CO<sub>2</sub> reached 0.35 kg/kW for 0.9 wt%, Al<sub>2</sub>O<sub>3</sub>.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 4","pages":"1492-1508"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2026","citationCount":"0","resultStr":"{\"title\":\"Experimental Enhancement of Thermal and Electrical Efficiency in Concentrator Photovoltaic Modules Using Nanofluid Cooling\",\"authors\":\"Yasser Elhenawy, Kareem Fouad, Ahmed Refaat, Osama A. Al-Qabandi, Monica Toderaș, Mohamed Bassyouni\",\"doi\":\"10.1002/ese3.2026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electricity production from photovoltaic panels is a clean and promising technology. However, increased panel temperatures resulting from solar intensity notably reduce productivity. Cooling these panels through diverse technologies becomes essential to enhance power generation and extend cell lifetime. In this study, electricity generation for concentrated photovoltaic (CPV) panels was enhanced by cooling with Al<sub>2</sub>O<sub>3</sub>/water nanofluid. An experimental analysis of the thermal and electrical efficiency of cooled and uncooled CPV was employed. Various loadings (0.3–0.9 wt%) of Al<sub>2</sub>O<sub>3</sub> were utilized to investigate the effect of Al<sub>2</sub>O<sub>3</sub> on overall performance. Each run was carried out at a flow rate of 1.0 L/min. The results showed that Al<sub>2</sub>O<sub>3</sub>/water nanofluid at a loading of 0.9 wt% resulted in a significant decrease in photovoltaic surface temperature. The temperature at the surface of CPV was significantly decreased by 52%. The electrical yield reached its maximum at 45 and 46 W/h using CPV without and with cooling water, respectively. The electricity generation was remarkably enhanced up to 54 W/h at 0.9 wt% Al<sub>2</sub>O<sub>3</sub>/water nanofluid. Electrical and thermal efficiency improved by 21% and 65%, respectively using 0.9 wt% of Al<sub>2</sub>O<sub>3</sub>. The total daily savings in CO<sub>2</sub> reached 0.35 kg/kW for 0.9 wt%, Al<sub>2</sub>O<sub>3</sub>.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 4\",\"pages\":\"1492-1508\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2026\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2026","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental Enhancement of Thermal and Electrical Efficiency in Concentrator Photovoltaic Modules Using Nanofluid Cooling
Electricity production from photovoltaic panels is a clean and promising technology. However, increased panel temperatures resulting from solar intensity notably reduce productivity. Cooling these panels through diverse technologies becomes essential to enhance power generation and extend cell lifetime. In this study, electricity generation for concentrated photovoltaic (CPV) panels was enhanced by cooling with Al2O3/water nanofluid. An experimental analysis of the thermal and electrical efficiency of cooled and uncooled CPV was employed. Various loadings (0.3–0.9 wt%) of Al2O3 were utilized to investigate the effect of Al2O3 on overall performance. Each run was carried out at a flow rate of 1.0 L/min. The results showed that Al2O3/water nanofluid at a loading of 0.9 wt% resulted in a significant decrease in photovoltaic surface temperature. The temperature at the surface of CPV was significantly decreased by 52%. The electrical yield reached its maximum at 45 and 46 W/h using CPV without and with cooling water, respectively. The electricity generation was remarkably enhanced up to 54 W/h at 0.9 wt% Al2O3/water nanofluid. Electrical and thermal efficiency improved by 21% and 65%, respectively using 0.9 wt% of Al2O3. The total daily savings in CO2 reached 0.35 kg/kW for 0.9 wt%, Al2O3.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.