左心室模型中二尖瓣结构的流体-结构相互作用模拟

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Joel Kronborg, Johan Hoffman
{"title":"左心室模型中二尖瓣结构的流体-结构相互作用模拟","authors":"Joel Kronborg,&nbsp;Johan Hoffman","doi":"10.1002/nme.70031","DOIUrl":null,"url":null,"abstract":"<p>Simulations of blood flow in patient-specific models of heart ventricles is a rapidly developing field of research, showing promise to improve future treatment of heart diseases. Fluid-structure interaction simulation of the mitral valve, with its complex structure including leaflets, chordae tendineae, and papillary muscles, provides additional prospects as well as challenges to such models. In this study, we combine a patient-specific model of the left ventricle with an idealized unified continuum fluid-structure interaction model of the mitral valve, to simulate the intraventricular diastolic blood flow. To the best of our knowledge, no monolithic fluid-structure interaction model, without the need for remeshing, has ever been used before to simulate the native mitral valve within the left ventricle. The chordae tendineae are simulated as a region of porous medium, to partially hinder the flow. Simulation results from this model are compared to those of a model with the same patient-specific left ventricle, but with the mitral valve simply modeled as a time-variant inflow boundary condition. The blood flow is analyzed with the E-wave propagation index, and by use of the triple decomposition of the velocity gradient tensor, which decomposes the flow into rigid body rotational flow, shearing flow, and irrotational straining flow. The triple decomposition enables analysis of the formation of initially large dominant flow features, such as the E-wave jet and the vortex ring around it, and their subsequent decay into smaller turbulent flow structures. This analysis of the development of flow structures over the duration of diastole appears to be in general agreement with the theory of the stability of rotation, shear, and strain structures. Elevated shear levels are investigated, but are found only in limited amounts that do not indicate significant risks of thrombus formation or other blood damage, which is to be expected in this healthy ventricle. The highest shear levels are localized at the leaflets in the fluid-structure interaction model, and at the ventricle wall in the planar model. The computed E-wave propagation indices are 1.21 for the fluid-structure interaction model and 1.90 for the planar valve model, which indicates proper washout in the apical region with no significant risk of blood stasis that could lead to left ventricular thrombus formation.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70031","citationCount":"0","resultStr":"{\"title\":\"Fluid-Structure Interaction Simulation of Mitral Valve Structures in a Left Ventricle Model\",\"authors\":\"Joel Kronborg,&nbsp;Johan Hoffman\",\"doi\":\"10.1002/nme.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simulations of blood flow in patient-specific models of heart ventricles is a rapidly developing field of research, showing promise to improve future treatment of heart diseases. Fluid-structure interaction simulation of the mitral valve, with its complex structure including leaflets, chordae tendineae, and papillary muscles, provides additional prospects as well as challenges to such models. In this study, we combine a patient-specific model of the left ventricle with an idealized unified continuum fluid-structure interaction model of the mitral valve, to simulate the intraventricular diastolic blood flow. To the best of our knowledge, no monolithic fluid-structure interaction model, without the need for remeshing, has ever been used before to simulate the native mitral valve within the left ventricle. The chordae tendineae are simulated as a region of porous medium, to partially hinder the flow. Simulation results from this model are compared to those of a model with the same patient-specific left ventricle, but with the mitral valve simply modeled as a time-variant inflow boundary condition. The blood flow is analyzed with the E-wave propagation index, and by use of the triple decomposition of the velocity gradient tensor, which decomposes the flow into rigid body rotational flow, shearing flow, and irrotational straining flow. The triple decomposition enables analysis of the formation of initially large dominant flow features, such as the E-wave jet and the vortex ring around it, and their subsequent decay into smaller turbulent flow structures. This analysis of the development of flow structures over the duration of diastole appears to be in general agreement with the theory of the stability of rotation, shear, and strain structures. Elevated shear levels are investigated, but are found only in limited amounts that do not indicate significant risks of thrombus formation or other blood damage, which is to be expected in this healthy ventricle. The highest shear levels are localized at the leaflets in the fluid-structure interaction model, and at the ventricle wall in the planar model. The computed E-wave propagation indices are 1.21 for the fluid-structure interaction model and 1.90 for the planar valve model, which indicates proper washout in the apical region with no significant risk of blood stasis that could lead to left ventricular thrombus formation.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在患者特定的心脏心室模型中模拟血液流动是一个快速发展的研究领域,显示出改善未来心脏病治疗的希望。由于二尖瓣的结构复杂,包括小叶、腱索和乳头肌,因此其流固耦合模拟为这类模型提供了新的前景和挑战。在这项研究中,我们将患者特异性左心室模型与二尖瓣的理想统一连续流体-结构相互作用模型结合起来,模拟心室舒张期血流。据我们所知,在不需要重新网格的情况下,还没有一个整体流固相互作用模型被用来模拟左心室内的天然二尖瓣。将腱索模拟为多孔介质区域,以部分阻碍流动。将该模型的模拟结果与具有相同患者特异性左心室但将二尖瓣简单建模为时变流入边界条件的模型的模拟结果进行了比较。利用e波传播指数对血流进行分析,并利用速度梯度张量的三重分解,将血流分解为刚体旋转流、剪切流和无旋转应变流。三重分解可以分析最初较大的主导流特征的形成,例如e波射流及其周围的涡环,以及它们随后衰变为较小的湍流结构。这种对舒张期流动结构发展的分析似乎与旋转、剪切和应变结构稳定性的理论基本一致。研究了剪切水平升高,但仅在有限的量中发现,并不表明血栓形成或其他血液损伤的显著风险,这是在健康心室中预期的。在流固耦合模型中,最高剪切水平位于小叶,在平面模型中位于脑室壁。流固耦合模型计算出的e波传播指数为1.21,平面瓣膜模型计算出的e波传播指数为1.90,表明在根尖区冲洗适当,没有明显的血瘀风险,不会导致左室血栓形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluid-Structure Interaction Simulation of Mitral Valve Structures in a Left Ventricle Model

Fluid-Structure Interaction Simulation of Mitral Valve Structures in a Left Ventricle Model

Simulations of blood flow in patient-specific models of heart ventricles is a rapidly developing field of research, showing promise to improve future treatment of heart diseases. Fluid-structure interaction simulation of the mitral valve, with its complex structure including leaflets, chordae tendineae, and papillary muscles, provides additional prospects as well as challenges to such models. In this study, we combine a patient-specific model of the left ventricle with an idealized unified continuum fluid-structure interaction model of the mitral valve, to simulate the intraventricular diastolic blood flow. To the best of our knowledge, no monolithic fluid-structure interaction model, without the need for remeshing, has ever been used before to simulate the native mitral valve within the left ventricle. The chordae tendineae are simulated as a region of porous medium, to partially hinder the flow. Simulation results from this model are compared to those of a model with the same patient-specific left ventricle, but with the mitral valve simply modeled as a time-variant inflow boundary condition. The blood flow is analyzed with the E-wave propagation index, and by use of the triple decomposition of the velocity gradient tensor, which decomposes the flow into rigid body rotational flow, shearing flow, and irrotational straining flow. The triple decomposition enables analysis of the formation of initially large dominant flow features, such as the E-wave jet and the vortex ring around it, and their subsequent decay into smaller turbulent flow structures. This analysis of the development of flow structures over the duration of diastole appears to be in general agreement with the theory of the stability of rotation, shear, and strain structures. Elevated shear levels are investigated, but are found only in limited amounts that do not indicate significant risks of thrombus formation or other blood damage, which is to be expected in this healthy ventricle. The highest shear levels are localized at the leaflets in the fluid-structure interaction model, and at the ventricle wall in the planar model. The computed E-wave propagation indices are 1.21 for the fluid-structure interaction model and 1.90 for the planar valve model, which indicates proper washout in the apical region with no significant risk of blood stasis that could lead to left ventricular thrombus formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信