李代数上几何精确薄壁梁的新型应变-连续有限元计算公式

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ziheng Huang, Ju Chen, Shixing Liu, Yongxin Guo
{"title":"李代数上几何精确薄壁梁的新型应变-连续有限元计算公式","authors":"Ziheng Huang,&nbsp;Ju Chen,&nbsp;Shixing Liu,&nbsp;Yongxin Guo","doi":"10.1002/nme.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Most existing geometrically exact thin-walled beam formulations on Lie group SE(3)<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation>$$ \\times $$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ \\mathbb{R} $$</annotation>\n </semantics></math> considering warping are <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation>$$ C $$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^0 $$</annotation>\n </semantics></math>-continuous. In this study, a novel strain-continuous element for geometrically exact thin-walled beam on Lie algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation>$$ \\mathfrak{s} $$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation>$$ \\mathfrak{e} $$</annotation>\n </semantics></math>(3)<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation>$$ \\times $$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ \\mathbb{R} $$</annotation>\n </semantics></math> is originally proposed, in which the torsion-related Wagner effect and warping are considered in the constitutive relations. The proposed beam element is not only locking-free intrinsically, but also is <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation>$$ C $$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^1 $$</annotation>\n </semantics></math>-continuous by using the proposed geometrical Hermite interpolation on Lie algebra. This interpolation based on Magnus expansion can simplify the description of interpolated element stress tensor and strain energy. Then, the simplified discrete strain operator can be obtained by interpolating the virtual twist vector totally independently of the beam element formulation, which can avoid calculating complex matrix and further reduce geometric nonlinearity greatly. Furthermore, the computational complexity of the discrete equilibrium equation and the corresponding Jacobi matrix for static problems can be reduced. Finally, five static examples without topological loops are taken to validate the fourth-order convergence rate, strain-continuity, path independence, and singularity-free properties of the proposed beam element formulation.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Strain-Continuous Finite Element Formulation for Geometrically Exact Thin-Walled Beam on Lie Algebra\",\"authors\":\"Ziheng Huang,&nbsp;Ju Chen,&nbsp;Shixing Liu,&nbsp;Yongxin Guo\",\"doi\":\"10.1002/nme.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Most existing geometrically exact thin-walled beam formulations on Lie group SE(3)<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>×</mo>\\n </mrow>\\n <annotation>$$ \\\\times $$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <annotation>$$ \\\\mathbb{R} $$</annotation>\\n </semantics></math> considering warping are <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$$ C $$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^0 $$</annotation>\\n </semantics></math>-continuous. In this study, a novel strain-continuous element for geometrically exact thin-walled beam on Lie algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation>$$ \\\\mathfrak{s} $$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation>$$ \\\\mathfrak{e} $$</annotation>\\n </semantics></math>(3)<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>×</mo>\\n </mrow>\\n <annotation>$$ \\\\times $$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <annotation>$$ \\\\mathbb{R} $$</annotation>\\n </semantics></math> is originally proposed, in which the torsion-related Wagner effect and warping are considered in the constitutive relations. The proposed beam element is not only locking-free intrinsically, but also is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$$ C $$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^1 $$</annotation>\\n </semantics></math>-continuous by using the proposed geometrical Hermite interpolation on Lie algebra. This interpolation based on Magnus expansion can simplify the description of interpolated element stress tensor and strain energy. Then, the simplified discrete strain operator can be obtained by interpolating the virtual twist vector totally independently of the beam element formulation, which can avoid calculating complex matrix and further reduce geometric nonlinearity greatly. Furthermore, the computational complexity of the discrete equilibrium equation and the corresponding Jacobi matrix for static problems can be reduced. Finally, five static examples without topological loops are taken to validate the fourth-order convergence rate, strain-continuity, path independence, and singularity-free properties of the proposed beam element formulation.</p>\\n </div>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70024\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70024","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑翘曲的李群SE(3) × $$ \times $$ (1) - $$ \mathbb{R} $$上的薄壁梁的精确几何表达式是C $$ C $$0 $$ {}^0 $$ -连续。在这项研究中,几何精确薄壁梁在李代数上的一种新的应变连续单元$$ \mathfrak{s} $$ e $$ \mathfrak{e} $$ (3) × $$ \times $$∈$$ \mathbb{R} $$在本构关系中考虑了扭转相关的瓦格纳效应和翘曲。利用李代数上的几何Hermite插值,所提出的梁单元不仅本质上是无锁的,而且是C $$ C $$ 1 $$ {}^1 $$连续的。这种基于Magnus展开的插值可以简化插值单元应力张量和应变能的描述。然后,通过完全独立于梁单元公式的虚拟扭转矢量插值得到简化的离散应变算子,避免了复杂矩阵的计算,进一步大大降低了几何非线性。此外,还可以降低静态问题的离散平衡方程和对应的雅可比矩阵的计算复杂度。最后,通过5个无拓扑环的静态算例验证了所提梁单元公式的四阶收敛速度、应变连续性、路径无关性和无奇点性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Strain-Continuous Finite Element Formulation for Geometrically Exact Thin-Walled Beam on Lie Algebra

Most existing geometrically exact thin-walled beam formulations on Lie group SE(3) × $$ \times $$ $$ \mathbb{R} $$ considering warping are C $$ C $$ 0 $$ {}^0 $$ -continuous. In this study, a novel strain-continuous element for geometrically exact thin-walled beam on Lie algebra s $$ \mathfrak{s} $$ e $$ \mathfrak{e} $$ (3) × $$ \times $$ $$ \mathbb{R} $$ is originally proposed, in which the torsion-related Wagner effect and warping are considered in the constitutive relations. The proposed beam element is not only locking-free intrinsically, but also is C $$ C $$ 1 $$ {}^1 $$ -continuous by using the proposed geometrical Hermite interpolation on Lie algebra. This interpolation based on Magnus expansion can simplify the description of interpolated element stress tensor and strain energy. Then, the simplified discrete strain operator can be obtained by interpolating the virtual twist vector totally independently of the beam element formulation, which can avoid calculating complex matrix and further reduce geometric nonlinearity greatly. Furthermore, the computational complexity of the discrete equilibrium equation and the corresponding Jacobi matrix for static problems can be reduced. Finally, five static examples without topological loops are taken to validate the fourth-order convergence rate, strain-continuity, path independence, and singularity-free properties of the proposed beam element formulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信